Spaceborne Synthetic Aperture Radar Aerial Moving Target Detection Based on Two-Dimensional Velocity Search
Abstract
:1. Introduction
2. Spaceborne SAR Aerial Target Detection and Focused Imaging Based on Two-Dimensional Velocity Search
Algorithm 1: Two-dimensional velocity search-based aerial motion target |
Step 1: Echo preprocessing: range compression + clutter suppression to the ground/range compression to the sea. Step 2: Aerial target detection based on Radon transform: detect and extract the moving target in the preprocessed echo data using the Radon transform; and determine the center position of the target using CFAR detection. Step 3: Rough search of aerial target motion parameters: set a reasonable rough search velocity group to realize the rough search using the BP algorithm. Step 4: Rough locking of aerial target motion parameters: take the minimum Shannon entropy criterion as the index. Step 5: Refined search of aerial target motion parameters: based on the rough search results to narrow the search range and improve the search accuracy, use the BP algorithm to realize the refined search. Step 6: Refined locking of aerial target motion parameters: take the minimum Shannon entropy criterion as the index. Step 7: Output: Output aerial target parameter estimation and focused imaging results. |
2.1. Echo Preprocessing
2.1.1. Echo Preprocessing for Ground Detection
2.1.2. Echo Preprocessing for Sea Detection
2.2. Aerial Target Detection Based on Radon Transform
2.3. Velocity Search
2.3.1. Two-Dimensional Search Velocity Setting
2.3.2. Two-Dimensional Velocity Search
3. Simulation Results and Analysis
3.1. Parameter and Echo Simulation
3.2. Spaceborne SAR Aerial Target Detection and Focused Imaging Based on Two-Dimensional Velocity Search
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chiu, S.; Dragošević, M. An efficient algorithm for fully capturing a ground moving target’s energy for spaceborne SAR-GMTI. In Proceedings of the 2011 IEEE RadarCon (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 288–293. [Google Scholar]
- Xi, L.; Zhang, C. A kind of dual-channel GMTI real-time processing method based on frequency DPCA. In Proceedings of the 2006 CIE International Conference on Radar, Shanghai, China, 16–19 October 2006; pp. 1–4. [Google Scholar]
- Li, Z.; Wu, J.; Li, W.; Huang, Y.; Yang, J. Dual-Channel DPCA technique in Bistatic Forward-looking SAR for moving target detection and imaging. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 1, pp. 942–945. [Google Scholar]
- Liang, Z.; Wang, J.; Li, G. Brief Analysis on SAR Technology and Application of Spaceborne SAR. Geomat. Spat. Inf. Technol. 2021, 44, 29–32. [Google Scholar]
- Mu, H. Research on Ground Moving Target Detection and Inaging in Multichannel SAR System. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2021. [Google Scholar]
- Hong, Z.; Bao, G. Review of radar automatic target recognition based on ensemble learning. J. Comput. Appl. 2024. [Google Scholar]
- Zhang, H.P.; Xu, Y.Q.; Zhang, X.Y.; Deng, Z.R. Dual-channel SAR slow moving target detection method based on multi-look and magnitude-phase joint. In Proceedings of the 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Nanjing, China, 23–25 September 2022; pp. 389–394. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Z.; Zhang, T.; Wang, Y. High-Squint SAR Imaging for Noncooperative Moving Ship Target Based on High Velocity Motion Platform. In Proceedings of the 2018 China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018. [Google Scholar]
- Jin, G.; Zhang, X.; Huang, J.; Zhu, D. High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function and Advantages. IEEE Trans. Aerosp. Electron. Syst. 2024, 1–15. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S.; Zhang, Q.; Xu, L.; He, Y.; Zhang, F. Graph-based few-shot learning with transformed feature propagation and optimal class allocation. Neurocomputing 2022, 470, 247–256. [Google Scholar] [CrossRef]
- Zhang, R.; Cao, Z.; Yang, S.; Si, L.; Sun, H.; Xu, L.; Sun, F. Cognition-Driven Structural Prior for Instance-Dependent Label Transition Matrix Estimation. IEEE Trans. Neural Netw. Learn. Syst. 2024. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. Research on Imaging and Detection Metchod of Moving Target in SAR. Master’s Thesis, Electronic Science Research Institute of China Electronics Technology Group Corporation, Beijing, China, 2019. [Google Scholar]
- Gong, Z. Research on the Algorithm of Multichannel SAR-GMTI. Master’s Thesis, China Academy of Space Technology Xi’an Branch, Xi’an, China, 2021. [Google Scholar]
- Wang, Y.; Zong, Z. Moving Target Detection of Airborne SAR Based on Virtual Tri-channel Displaced Phase Center Antenna Approach. In Proceedings of the 2014 Seventh International Symposium on Computational Intelligence and Design, Hangzhou, China, 13–14 December 2014; Volume 1, pp. 347–350. [Google Scholar] [CrossRef]
- Wang, X.; Gao, G.; Zhou, S.; Zhu, Y. Performance comparison and assessment of displaced phase center antenna and along-track interferometry techniques used in synthetic aperture radar-ground moving target indication. J. Appl. Remote Sens. Soc. Photo-Opt. Instrum. Eng. 2014, 8, 083504. [Google Scholar] [CrossRef]
- Zheng, M. Synthetic Aperture Radar Moving Target Detection and Imaging Study. Ph.D. Thesis, Institute of Electrics Chinese Academy of Sciences, Beijing, China, 2003. [Google Scholar]
- Pu, X.; An, H.; Sun, Z.; Wu, J.; Li, Z.; Yang, J. GEO Spaceborne-Airborne Bistatic SAR Clutter Supression Using Improved DPCA Method. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 559–562. [Google Scholar]
- Zhang, J.; Cheng, G.; Tang, J.; Xie, Z.; Wu, H. A Novel Imaging Algorithm for Wide-Beam Multiple-Receiver Synthetic Aperture Sonar Systems. Remote Sens. 2023, 15, 3745. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, W.; Zheng, M.; Zhao, L.; Zhou, Z.X. Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI. Remote Sens. 2022, 14, 617. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Mi, Y.P.; Shi, X. SAR Ground Moving Target Imaging With Adjacent Cross Correlation function. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019. [Google Scholar]
- Jiang, Y.; Chen, Y.; Wang, Y.; Wang, W. The GMTI Technology of Spaceborn SAR. Aerosp. Shanghai 2009, 26, 60–64. [Google Scholar]
- Hou, Y.; Wang, J.; Liu, X.; Wang, K.; Gao, Y. An automatic SAR-GMTI algorithm based on DPCA. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 592–595. [Google Scholar]
- Kang, Y.; Xiang, C.; Wang, W.; Yu, G. Small Target Detection Based on SAR Image Changes. Fire Control. Radar Technol. 2024, 53, 1–7. [Google Scholar]
- Zhang, R.; Xu, L.; Yu, Z.; Shi, Y.; Mu, C.; Xu, M. Deep-IRTarget: An automatic target detector in infrared imagery using dual-domain feature extraction and allocation. IEEE Trans. Multimed. 2021, 24, 1735–1749. [Google Scholar] [CrossRef]
- Zhang, R.; Tan, J.; Cao, Z.; Xu, L.; Liu, Y.; Si, L.; Sun, F. Part-Aware Correlation Networks for Few-shot Learning. IEEE Trans. Multimed. 2024. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Lv, Z.; Wang, K.; Dai, Z.; Liu, L.; Liu, M. Efficient radon fractional Fourier transform for efficient motion parameters estimation in SAR-GMTI system. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Yan, H.; Wang, J.; Huang, J.; WANG, X. A Moving-targets Detection Algorithm for Spaceborne SAR System Based on Two-dimensional Velocity Search Method. J. Electron. Inf. Technol. 2019, 41, 1287–1293. [Google Scholar]
- Li, R.; Yan, H.; Wu, C.; Zhao, R.; Zhang, J.; Zhu, D. Low-Flying Moving Target Detection and Imaging Algorithm of Spaceborne SAR Based on Two-Dimensional Velocity Search. In Proceedings of the 2022 14th International Conference on Signal Processing Systems (ICSPS), Zhenjiang, China, 18–20 November 2022; pp. 437–443. [Google Scholar] [CrossRef]
- Lou, R.; Zhao, L.; He, Q.; Ji, K.; Kuang, G. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects. J. Radars 2023, 13, 307–330. [Google Scholar]
- Zhao, X.; Liao, X.; Ding, Z.; Gao, W. A method for moving target detection based on airborne multi-aspect SAR system. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Xi, L.; Jinlin, N.; Guosui, L.; Yi, L.; Hong, G.; Weimin, S. Research on SAR/ISAR phase compensation technique based on image criterion. J. Electron. 2000, 22, 279–289. [Google Scholar]
- Wahl, D.E.; Eichel, P.; Ghiglia, D.; Jakowatz, C. Phase gradient autofocus—A robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–835. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Wang, S. Bistatic Radar DPCA Technique. In Proceedings of the 2006 CIE International Conference on Radar, Shanghai, China, 16–19 October 2006; pp. 1–4. [Google Scholar]
- Chen, C.; Qian, B.; Wang, S. DPCA motion compensation technique based on multiple phase centers. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 1, pp. 711–714. [Google Scholar]
- Jiang, Y.; Wang, L.; Ling, Q.; Ma, J.; Huang, P.; Liu, X.; Fan, J. Spaceborne HRWS-SAR-GMTI System Design Method with Optimal Configuration. Remote Sens. 2024, 16, 2148. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Satellite flight velocity | 7800 m/s |
Scene center slant distance | 820 km |
Operating frequency | 5.4 GHz |
Satellite altitude | 730 km |
Pulse repetition frequency | 1248 Hz |
Antenna aperture length | 3.1 km |
Distance sampling frequency | 34.1 MHz |
Transmit pulse time width | 15 s |
Distance pulse modulation frequency | 0.67 MHz/s |
Azimuthal modulation frequency | 2671 Hz/s |
Distance resolution | 5 m |
Azimuthal resolution | 6.25 m |
Signal bandwidth | 30 MHz |
Channel spacing | 10 m |
Aerial target radial velocity | 338 m/s |
Aerial target tangential velocity | 286 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Yan, H.; Liu, H.; Xu, W.; Min, Z.; Zhu, D. Spaceborne Synthetic Aperture Radar Aerial Moving Target Detection Based on Two-Dimensional Velocity Search. Remote Sens. 2024, 16, 2392. https://doi.org/10.3390/rs16132392
Hao J, Yan H, Liu H, Xu W, Min Z, Zhu D. Spaceborne Synthetic Aperture Radar Aerial Moving Target Detection Based on Two-Dimensional Velocity Search. Remote Sensing. 2024; 16(13):2392. https://doi.org/10.3390/rs16132392
Chicago/Turabian StyleHao, Jialin, He Yan, Hui Liu, Wenshuo Xu, Zhou Min, and Daiyin Zhu. 2024. "Spaceborne Synthetic Aperture Radar Aerial Moving Target Detection Based on Two-Dimensional Velocity Search" Remote Sensing 16, no. 13: 2392. https://doi.org/10.3390/rs16132392
APA StyleHao, J., Yan, H., Liu, H., Xu, W., Min, Z., & Zhu, D. (2024). Spaceborne Synthetic Aperture Radar Aerial Moving Target Detection Based on Two-Dimensional Velocity Search. Remote Sensing, 16(13), 2392. https://doi.org/10.3390/rs16132392