Detection of Coral Reef Bleaching by Multitemporal Sentinel-2 Data Using the PU-Bagging Algorithm: A Feasibility Study at Lizard Island
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Site
2.2. Satellite Data
2.3. Ground Truth
3. Methodology
3.1. PIFs Algorithm
3.2. PU-Bagging Algorithm
Algorithm 1. The pseudo-code of PU-bagging algorithm |
Input: Unlabeled data, Positive samples, = Number of the samples = Number of the iteration Output: The score of each in initialization: ∀ ∈ , ← 0, ← 0, ← 0 for t = 1 to do Choose the sub-sample with size from Train the basic classifier to discriminate and For ∈ \, to update: ← + ← + 1 end for |
3.3. Classifier
4. Results and Discussion
4.1. Bleaching Detection Results
4.2. The Effect of PIFs
4.3. Applicability of PU-Bagging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, T.P.; Barnes, M.L.; Bellwood, D.R.; Cinner, J.E.; Cumming, G.S.; Jackson, J.B.C.; Kleypas, J.; van de Leemput, I.A.; Lough, J.M.; Morrison, T.H.; et al. Coral Reefs in the Anthropocene. Nature 2017, 546, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C. Status of Coral Reefs of the World: 2008; Global Coral Reef Monitoring Network and Reef and Rainforest Research Center: Townsville, Australia, 2008. [Google Scholar]
- Gardner, T.A.; Côté, I.M.; Gill, J.A.; Grant, A.; Watkinson, A.R. Long-Term Region-Wide Declines in Caribbean Corals. Science 2003, 301, 958–960. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O. Climate Change, Coral Bleaching and the Future of the World’s Coral Reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef]
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The Cost-Effectiveness of Remote Sensing for Tropical Coastal Resources Assessment and Management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Clark, C.D.; Mumby, P.J.; Chisholm, J.R.M.; Jaubert, J.; Andrefouet, S. Spectral Discrimination of Coral Mortality States Following a Severe Bleaching Event. Int. J. Remote Sens. 2000, 21, 2321–2327. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Dietz, J.B.; Berkelmans, R.; Andréfouët, S.; Skirving, W.; Strong, A.E.; Tuttle, B.T. Satellite Observation of Keppel Islands (Great Barrier Reef) 2002 Coral Bleaching Using IKONOS Data. Coral Reefs 2004, 23, 123–132. [Google Scholar] [CrossRef]
- Rowlands, G.P.; Purkis, S.J.; Riegl, B.M. The 2005 Coral-bleaching Event Roatan (Honduras): Use of Pseudoinvariant Features (PIFs) in Satellite Assessments. J. Spat. Sci. 2008, 53, 99–112. [Google Scholar] [CrossRef]
- Hochberg, E.; Atkinson, M. Spectral Discrimination of Coral Reef Benthic Communities. Coral Reefs 2000, 19, 164–171. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Atkinson, M.J.; Andréfouët, S. Spectral Reflectance of Coral Reef Bottom-Types Worldwide and Implications for Coral Reef Remote Sensing. Remote Sens. Environ. 2003, 85, 159–173. [Google Scholar] [CrossRef]
- Andréfouët, S.; Mumby, P.; McField, M.; Hu, C.; Muller-Karger, F. Revisiting Coral Reef Connectivity. Coral Reefs 2002, 21, 43–48. [Google Scholar] [CrossRef]
- Palandro, D.; Andréfouët, S.; Dustan, P.; Muller-Karger, F.E. Change Detection in Coral Reef Communities Using Ikonos Satellite Sensor Imagery and Historic Aerial Photographs. Int. J. Remote Sens. 2003, 24, 873–878. [Google Scholar] [CrossRef]
- Holden, H.; LeDrew, E. Spectral Discrimination of Healthy and Non-Healthy Corals Based on Cluster Analysis, Principal Components Analysis, and Derivative Spectroscopy. Remote Sens. Environ. 1998, 65, 217–224. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.L.; et al. Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef]
- Kabiri, K.; Pradhan, B.; Shafri, H.Z.M.; Mansor, S.B.; Samimi-Namin, K. A Novel Approach to Estimate Diffuse Attenuation Coefficients for QuickBird Satellite Images: A Case Study at Kish Island, the Persian Gulf. J. Indian Soc. Remote Sens. 2013, 41, 797–806. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Wang, F.; Chen, Y.; Lee, Z. Detection of Coral Reef Bleaching Based on Sentinel-2 Multi-Temporal Imagery: Simulation and Case Study. Front. Mar. Sci. 2021, 8, 584263. [Google Scholar] [CrossRef]
- Douglas, A.E. Coral Bleaching––How and Why? Mar. Pollut. Bull. 2003, 46, 385–392. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global Warming and Recurrent Mass Bleaching of Corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and Temporal Patterns of Mass Bleaching of Corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef]
- Great Barrier Reef Marine Park Authority. 2016 Coral Bleaching Event on the Great Barrier Reef; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2017. [Google Scholar]
- Critchell, K.; Hoogenboom, M. Acropora Bleaching Data, Lizard Island; James Cook University: Cairns, Australia, 2016. [Google Scholar] [CrossRef]
- Hoogenboom, M.O.; Frank, G.E.; Chase, T.J.; Jurriaans, S.; Álvarez-Noriega, M.; Peterson, K.; Critchell, K.; Berry, K.L.E.; Nicolet, K.J.; Ramsby, B.; et al. Environmental Drivers of Variation in Bleaching Severity of Acropora Species during an Extreme Thermal Anomaly. Front. Mar. Sci. 2017, 4, 376. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Lyzenga, D.R. Remote Sensing of Bottom Reflectance and Water Attenuation Parameters in Shallow Water Using Aircraft and Landsat Data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric Scene Normalization Using Pseudoinvariant Features. Remote Sens. Environ. 1988, 26, 1–16. [Google Scholar] [CrossRef]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M. Characterizing the Vertical Diffuse Attenuation Coefficient for Downwelling Irradiance in Coastal Waters: Implications for Water Penetration by High Resolution Satellite Data. ISPRS J. Photogramm. Remote Sens. 2005, 60, 48–64. [Google Scholar] [CrossRef]
- Elkan, C.; Noto, K. Learning Classifiers from Only Positive and Unlabeled Data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 213–220. [Google Scholar]
- Mordelet, F.; Vert, J.-P. A Bagging SVM to Learn from Positive and Unlabeled Examples. Pattern Recognit. Lett. 2014, 37, 201–209. [Google Scholar] [CrossRef]
- Bekker, J.; Davis, J. Learning from Positive and Unlabeled Data: A Survey. Mach Learn 2020, 109, 719–760. [Google Scholar] [CrossRef]
- Wu, B.; Qiu, W.; Jia, J.; Liu, N. Landslide Susceptibility Modeling Using Bagging-Based Positive-Unlabeled Learning. IEEE Geosci. Remote Sens. Lett. 2021, 18, 766–770. [Google Scholar] [CrossRef]
- Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M.K. Decision Tree Regression for Soft Classification of Remote Sensing Data. Remote Sens. Environ. 2005, 97, 322–336. [Google Scholar] [CrossRef]
Class | DI | Proposed | ||
---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | |
Bleached coral reefs | 50 | 2.8 | 94.1 | 88.9 |
Sand | 52.7 | 97.5 | 90.5 | 95 |
OA (%) | 52.6 | 92.1 | ||
Kappa | 0.523 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Yang, F.; Liu, H.; Xu, Y. Detection of Coral Reef Bleaching by Multitemporal Sentinel-2 Data Using the PU-Bagging Algorithm: A Feasibility Study at Lizard Island. Remote Sens. 2024, 16, 2473. https://doi.org/10.3390/rs16132473
Wu K, Yang F, Liu H, Xu Y. Detection of Coral Reef Bleaching by Multitemporal Sentinel-2 Data Using the PU-Bagging Algorithm: A Feasibility Study at Lizard Island. Remote Sensing. 2024; 16(13):2473. https://doi.org/10.3390/rs16132473
Chicago/Turabian StyleWu, Ke, Fan Yang, Huize Liu, and Ying Xu. 2024. "Detection of Coral Reef Bleaching by Multitemporal Sentinel-2 Data Using the PU-Bagging Algorithm: A Feasibility Study at Lizard Island" Remote Sensing 16, no. 13: 2473. https://doi.org/10.3390/rs16132473
APA StyleWu, K., Yang, F., Liu, H., & Xu, Y. (2024). Detection of Coral Reef Bleaching by Multitemporal Sentinel-2 Data Using the PU-Bagging Algorithm: A Feasibility Study at Lizard Island. Remote Sensing, 16(13), 2473. https://doi.org/10.3390/rs16132473