Spatial Downscaling of Nighttime Land Surface Temperature Based on Geographically Neural Network Weighted Regression Kriging
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
2.2.1. Spaceborne Thermal Infrared Sensors and NLST Data
2.2.2. Auxiliary Factors
2.2.3. In-Site LST Data
3. Methods
3.1. GNNWR
3.2. ATPK for Downscaling the Regression Residuals
3.3. GNNWRK
3.4. GNNWRK Modelling and Implementation
3.5. Validation and Evaluation
3.5.1. Method Validation
3.5.2. Method Evaluation
4. Results
4.1. LST Downscaling Evaluation
4.2. Spatial Distribution of High-Resolution NLST
5. Discussion
5.1. The Analysis of the Model Superiority in the Detail Description of the Local Region
5.2. Validation of Downscaling Real MODIS NLST
5.3. Validation with In-Site NLST
5.4. Spatial Texture and Influencing Factors of NLST
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Kiachidis, K.; Kalmintzis, G.; Kalea, A.; Bantasis, C.; Koumadoraki, P.; Spathara, M.E.; Tsolaki, A.; Tzampazidou, M.I.; Gemitzi, A. Determination of Annual and Seasonal Daytime and Nighttime Trends of MODIS LST over Greece-Climate Change Implications. Sci. Total Environ. 2018, 616–617, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Julien, Y.; Sobrino, J.A. The Yearly Land Cover Dynamics (YLCD) Method: An Analysis of Global Vegetation from NDVI and LST Parameters. Remote Sens. Environ. 2009, 113, 329–334. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.; Guo, B.; Yang, G.; Li, J.; Yu, Y. Changes in the Vegetation NPP of Mainland China under the Combined Actions of Climatic-Socioeconomic Factors. Forests 2023, 14, 2341. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Xu, N.; Ding, B.; Yu, X. Ecosystem Service Functions in the Upper Reaches of the Yellow River in Sichuan Based on Land Use Change Value Evaluation. J. Soil Water Conserv. 2024, 38, 178–189. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, R.; Tang, B.-H.; Wu, H.; Li, Z.-L. A Simple Method for Soil Moisture Determination from LST–VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 638–648. [Google Scholar] [CrossRef]
- Anderson, M.; Norman, J.; Kustas, W.; Houborg, R.; Starks, P.; Agam, N. A Thermal-Based Remote Sensing Technique for Routine Mapping of Land-Surface Carbon, Water and Energy Fluxes from Field to Regional Scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, L.; He, L.; Lipson, D.A.; Wang, Y.; Wang, S.; Xu, X. Homeostatic Evidence of Management-Induced Phosphorus Decoupling from Soil Microbial Carbon and Nitrogen Metabolism. J. Plant Ecol. 2023, 16, rtad035. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, Y.; Feng, Z.D. Differences in the Development of Deep and Shallow Mudstone Fractures in Qigu Anticline in the Junggar Basin and Their Constraints on Oil and Gas Preservation Conditions. J. Henan Polytech. Univ. (Nat. Sci.) 2024, 43, 49–56. [Google Scholar] [CrossRef]
- Wang, A.; Barlage, M.; Zeng, X.; Draper, C.S. Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and in Situ Measurement: Comparison of Land Skin Temperature. J. Geophys. Res. Atmos. 2014, 119, 3093–3106. [Google Scholar] [CrossRef]
- Azevedo, J.; Chapman, L.; Muller, C. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens. 2016, 8, 153. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Abdullah, H.; Omar, D.K.; Polat, N.; Bilgili, A.V.; Sharef, S.H. A Comparison between Day and Night Land Surface Temperatures Using Acquired Satellite Thermal Infrared Data in a Winter Wheat Field. Remote Sens. Appl. Soc. Environ. 2020, 19, 100368. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Sobstyl, J.M.; Emig, T.; Qomi, M.J.A.; Ulm, F.-J.; Pellenq, R.J.-M. Role of City Texture in Urban Heat Islands at Nighttime. Phys. Rev. Lett. 2018, 120, 108701. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between Urban Heat Island and Urban Pollution Island during Summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Murage, P.; Hajat, S.; Kovats, R.S. Effect of Night-Time Temperatures on Cause and Age-Specific Mortality in London. Environ. Epidemiol. 2017, 1, e005. [Google Scholar] [CrossRef]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and Day: The Influence and Relative Importance of Urban Characteristics on Remotely Sensed Land Surface Temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Krishnan, P.; Kochendorfer, J.; Dumas, E.J.; Guillevic, P.C.; Baker, C.B.; Meyers, T.P.; Martos, B. Comparison of In-Situ, Aircraft, and Satellite Land Surface Temperature Measurements over a NOAA Climate Reference Network Site. Remote Sens. Environ. 2015, 165, 249–264. [Google Scholar] [CrossRef]
- Wang, M.; He, G.; Zhang, Z.; Wang, G.; Zhang, Z.; Cao, X.; Wu, Z.; Liu, X. Comparison of Spatial Interpolation and Regression Analysis Models for an Estimation of Monthly Near Surface Air Temperature in China. Remote Sens. 2017, 9, 1278. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Atkinson, P.M. Downscaling in Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 106–114. [Google Scholar] [CrossRef]
- Pu, R.; Bonafoni, S. Thermal Infrared Remote Sensing Data Downscaling Investigations: An Overview on Current Status and Perspectives. Remote Sens. Appl. Soc. Environ. 2023, 29, 100921. [Google Scholar] [CrossRef]
- Dong, P.; Zhan, W.; Wang, C.; Jiang, S.; Du, H.; Liu, Z.; Chen, Y.; Li, L.; Wang, S.; Ji, Y. Simple yet Efficient Downscaling of Land Surface Temperatures by Suitably Integrating Kernel- and Fusion-Based Methods. ISPRS J. Photogramm. Remote Sens. 2023, 205, 317–333. [Google Scholar] [CrossRef]
- Quan, J.L.; Zhan, W.F.; Chen, Y.H.; Liu, W.Y. Downscaling Remotely Sensed Land Surface Temperatures: A Comparison of Typical Methods. J. Remote Sens. 2013, 17, 361–387. [Google Scholar]
- Hutengs, C.; Vohland, M. Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index–Radiometric Temperature Relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P.K. Hyperspectral Imagery for Disaggregation of Land Surface Temperature with Selected Regression Algorithms over Different Land Use Land Cover Scenes. ISPRS J. Photogramm. Remote Sens. 2014, 96, 76–93. [Google Scholar] [CrossRef]
- Lu, B.; Ge, Y.; Qin, K.; Zheng, J. A Review on Geographically Weighted Regression. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1356–1366. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Zhu, X.M.; Song, X.N.; Leng, P.; Hu, R.H. Spatial Downscaling of Land Surface Temperature with the Multi-Scale Geographically Weighted Regression. Natl. Remote Sens. Bull. 2021, 25, 1749–1766. [Google Scholar] [CrossRef]
- Du, Z.; Wang, Z.; Wu, S.; Zhang, F.; Liu, R. Geographically Neural Network Weighted Regression for the Accurate Estimation of Spatial Non-Stationarity. Int. J. Geogr. Inf. Sci. 2020, 34, 1353–1377. [Google Scholar] [CrossRef]
- Wu, S.; Du, Z.; Wang, Y.; Lin, T.; Zhang, F.; Liu, R. Modeling Spatially Anisotropic Nonstationary Processes in Coastal Environments Based on a Directional Geographically Neural Network Weighted Regression. Sci. Total Environ. 2020, 709, 136097. [Google Scholar] [CrossRef]
- Du, Z.; Qi, J.; Wu, S.; Zhang, F.; Liu, R. A Spatially Weighted Neural Network Based Water Quality Assessment Method for Large-Scale Coastal Areas. Environ. Sci. Technol. 2021, 55, 2553–2563. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, S.; Wang, Y.; Zhang, F.; Liu, R.; Du, Z. Satellite-Based Mapping of High-Resolution Ground-Level PM2.5 with VIIRS IP AOD in China through Spatially Neural Network Weighted Regression. Remote Sens. 2021, 13, 1979. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, L.; Wu, S.; Zhu, Y.; Dai, Z.; Wang, Y.; Qi, J.; Chen, Y.; Du, Z. A High-Resolution Land Surface Temperature Downscaling Method Based on Geographically Weighted Neural Network Regression. Remote Sens. 2023, 15, 1740. [Google Scholar] [CrossRef]
- Harris, P. A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing between Autocorrelation and Heterogeneity Effects. Geogr. Anal. 2019, 51, 151–181. [Google Scholar] [CrossRef]
- Kyriakidis, P.C. A Geostatistical Framework for Area-to-Point Spatial Interpolation. Geogr. Anal. 2004, 36, 259–289. [Google Scholar] [CrossRef]
- Jin, Y.; Ge, Y.; Wang, J.; Chen, Y.; Heuvelink, G.B.M.; Atkinson, P.M. Downscaling AMSR-2 Soil Moisture Data with Geographically Weighted Area-to-Area Regression Kriging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2362–2376. [Google Scholar] [CrossRef]
- Pereira, O.; Melfi, A.; Montes, C.; Lucas, Y. Downscaling of ASTER Thermal Images Based on Geographically Weighted Regression Kriging. Remote Sens. 2018, 10, 633. [Google Scholar] [CrossRef]
- Yang, C.; Zhan, Q.; Lv, Y.; Liu, H. Downscaling Land Surface Temperature Using Multiscale Geographically Weighted Regression Over Heterogeneous Landscapes in Wuhan, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5213–5222. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, F.; Jiang, H.; Hu, H.; Zhong, K.; Jing, W.; Yang, J.; Jia, B. Downscaling Aster Land Surface Temperature over Urban Areas with Machine Learning-Based Area-To-Point Regression Kriging. Remote Sens. 2020, 12, 1082. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the Collection-6 MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Cho, D.; Lee, Y.; Bae, D.; Sismanidis, P. Downscaling MODIS Nighttime Land Surface Temperatures in Urban Areas Using ASTER Thermal Data through Local Linear Forest. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102827. [Google Scholar] [CrossRef]
- Dong, P.; Gao, L.; Zhan, W.; Liu, Z.; Li, J.; Lai, J.; Li, H.; Huang, F.; Tamang, S.K.; Zhao, L. Global Comparison of Diverse Scaling Factors and Regression Models for Downscaling Landsat-8 Thermal Data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 44–56. [Google Scholar] [CrossRef]
- Pan, X.; Zhu, X.; Yang, Y.; Cao, C.; Zhang, X.; Shan, L. Applicability of Downscaling Land Surface Temperature by Using Normalized Difference Sand Index. Sci. Rep. 2018, 8, 9530. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; Van Der Kwast, J.; Van De Voorde, T.; Batelaan, O. Evaluation of the DisTrad Thermal Sharpening Methodology for Urban Areas. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 163–172. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Privette, J.L.; Coudert, B.; Palecki, M.A.; Demarty, J.; Ottlé, C.; Augustine, J.A. Land Surface Temperature Product Validation Using NOAA’s Surface Climate Observation Networks—Scaling Methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sens. Environ. 2012, 124, 282–298. [Google Scholar] [CrossRef]
- Hong, F.; Zhan, W.; Göttsche, F.-M.; Liu, Z.; Zhou, J.; Huang, F.; Lai, J.; Li, M. Comprehensive Assessment of Four-Parameter Diurnal Land Surface Temperature Cycle Models under Clear-Sky. ISPRS J. Photogramm. Remote Sens. 2018, 142, 190–204. [Google Scholar] [CrossRef]
- Ye, X.; Ren, H.; Zhu, J.; Fan, W.; Qin, Q. Split-Window Algorithm for Land Surface Temperature Retrieval from Landsat-9 Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7507205. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Atkinson, P.M.; Zhao, Y. Downscaling MODIS Images with Area-to-Point Regression Kriging. Remote Sens. Environ. 2015, 166, 191–204. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Jeganathan, C.; Hamm, N.A.S.; Mukherjee, S.; Atkinson, P.M.; Raju, P.L.N.; Dadhwal, V.K. Evaluating a Thermal Image Sharpening Model over a Mixed Agricultural Landscape in India. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 178–191. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Haining, R.; Zhang, T.; Xu, C.; Hu, M.; Yin, Q.; Li, L.; Zhou, C.; Li, G.; Chen, H. Statistical Modeling of Spatially Stratified Heterogeneous Data. Ann. Am. Assoc. Geogr. 2024, 114, 499–519. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban Ecological Land and Natural-Anthropogenic Environment Interactively Drive Surface Urban Heat Island: An Urban Agglomeration-Level Study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
Study Area | Code | Landsat8/9 | MODIS | ASTER |
---|---|---|---|---|
Tucson, Arizona, USA | A-(1) | 13 October 2023 | 16 October 2023 | 16 October 2019 |
16 October 2023 | ||||
A-(2) | 06 May 2023 | 08 May 2023 | 26 May 2022 | |
08 May 2023 | ||||
A-(3) | 18 December 2018 | 09 December 2018 | 17 December 2015 | |
09 December 2018 | ||||
A-(4) | 27 May 2019 | 25 May 2019 | 13 March 2016 | |
25 May 2019 | ||||
A-(5) | 25 June 2018 | 02 July 2018 | 13 June 2017 | |
02 July 2018 | ||||
Indianapolis, Indiana, USA | B-(1) | 15 September 2022 | 15 September 2022 | 08 September 2022 |
15 September 2022 | ||||
B-(2) | 03 June 2022 | 04 June 2022 | 17 June 2021 | |
04 June 2022 |
Input Layer | Hidden Layer1 | Hidden Layer2 | Hidden Layer3 | Hidden Layer4 | Hidden Layer5 | Output Layer |
---|---|---|---|---|---|---|
flexible | 2048 | 1024 | 512 | 256 | 128 | 7 |
Maximum epoch | Learning rate | dropout | Batch maximum | optimizer | ||
1024 | 0.0008 | 0.01 | 256 | Adamax |
Area Code | Model | Metrics | |||
---|---|---|---|---|---|
Pcc | RMSE | MAE | MAPE | ||
A-(1) | GNNWRK | 0.922 | 1.707 | 1.503 | 0.506 |
GNNWR | 0.909 | 1.809 | 1.591 | 0.535 | |
GWR | 0.885 | 1.987 | 1.749 | 0.589 | |
RF | 0.830 | 2.125 | 1.798 | 0.604 | |
TsHARP | 0.870 | 1.912 | 1.619 | 0.544 | |
A-(2) | GNNWRK | 0.930 | 0.886 | 0.652 | 0.223 |
GNNWR | 0.921 | 0.938 | 0.691 | 0.236 | |
GWR | 0.895 | 1.084 | 0.799 | 0.273 | |
RF | 0.843 | 1.301 | 0.977 | 0.334 | |
TsHARP | 0.781 | 1.605 | 1.148 | 0.392 | |
B-(1) | GNNWRK | 0.808 | 0.998 | 0.738 | 0.253 |
GNNWR | 0.786 | 1.051 | 0.777 | 0.267 | |
GWR | 0.748 | 1.150 | 0.835 | 0.287 | |
RF | 0.749 | 1.115 | 0.831 | 0.285 | |
TsHARP | 0.613 | 1.523 | 1.121 | 0.385 | |
B-(2) | GNNWRK | 0.763 | 1.098 | 0.843 | 0.291 |
GNNWR | 0.746 | 1.134 | 0.871 | 0.301 | |
GWR | 0.723 | 1.180 | 0.897 | 0.310 | |
RF | 0.699 | 1.219 | 0.932 | 0.322 | |
TsHARP | 0.497 | 1.775 | 1.318 | 0.455 |
Area Code | Time | In-Site NLST/K | GNNWRK NLST/K | Error/K | Resampled MODIS/K | Error/K |
---|---|---|---|---|---|---|
A-(1) | 02 July 2018 05:30:00 | 299.15 | 299.17 | 0.02 | 299.42 | 0.27 |
A-(2) | 16 October 2023 05:01:35 | 298.55 | 299.19 | 0.64 | 299.27 | 0.72 |
A-(3) | 08 May 2023 05:05:57 | 295.65 | 295.55 | 0.1 | 295.17 | 0.48 |
A-(4) | 09 December 2018 05:28:47 | 281.15 | 282.48 | 1.33 | 282.69 | 1.54 |
A-(5) | 25 May 2019 05:34:56 | 292.25 | 287.51 | 4.74 | 282.90 | 9.35 |
mean | 1.366 | 2.472 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, N.; Zhang, L.; Jing, H.; Yan, Y.; Wu, S.; Liu, R. Spatial Downscaling of Nighttime Land Surface Temperature Based on Geographically Neural Network Weighted Regression Kriging. Remote Sens. 2024, 16, 2542. https://doi.org/10.3390/rs16142542
Wang J, Zhang N, Zhang L, Jing H, Yan Y, Wu S, Liu R. Spatial Downscaling of Nighttime Land Surface Temperature Based on Geographically Neural Network Weighted Regression Kriging. Remote Sensing. 2024; 16(14):2542. https://doi.org/10.3390/rs16142542
Chicago/Turabian StyleWang, Jihan, Nan Zhang, Laifu Zhang, Haoyu Jing, Yiming Yan, Sensen Wu, and Renyi Liu. 2024. "Spatial Downscaling of Nighttime Land Surface Temperature Based on Geographically Neural Network Weighted Regression Kriging" Remote Sensing 16, no. 14: 2542. https://doi.org/10.3390/rs16142542
APA StyleWang, J., Zhang, N., Zhang, L., Jing, H., Yan, Y., Wu, S., & Liu, R. (2024). Spatial Downscaling of Nighttime Land Surface Temperature Based on Geographically Neural Network Weighted Regression Kriging. Remote Sensing, 16(14), 2542. https://doi.org/10.3390/rs16142542