The Impact of Glacial Shrinkage on Future Streamflow in the Urumqi River Source Region of Eastern Tien Shan, Central Asia
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Model Description
2.2.1. Snow and Glacier Routine
2.2.2. Soil Routine
2.2.3. Response and Routing Routine
2.3. Data Description
2.3.1. CMIP6 Climate Scenario
2.3.2. Percentile Statistical Downscaling
2.3.3. Measured Data
2.3.4. Spatial Data
3. Model Preparation and Application
3.1. Meteorological Data Downscaling
3.2. Changes in Projected Climate
3.3. Calibration and Validation
4. Result and Discussion
4.1. Components of Runoff
4.2. Future Runoff Cycle
4.3. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Annina, S.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Change 2012, 2, 725–731. [Google Scholar]
- Tandong, Y.; Wu, G.; Xu, B.; Wang, W.; Gao, J.; An, B. Asian water tower change and its impacts. Bull. Chin. Acad. Sci. (Chin. Version) 2019, 34, 1203–1209. [Google Scholar]
- Immerzeel, W.W.; Van Beek, L.P.; Konz, M.; Shrestha, A.B.; Bierkens, M.F. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Change 2012, 110, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Peter, J.; Hock, R.; Schneider, T. The concept of glacier storage: A review. J. Hydrol. 2003, 282, 116–129. [Google Scholar]
- Vishal, S.; Jain, S.K.; Shukla, S. Glacier change and glacier runoff variation in the Himalayan Baspa river basin. J. Hydrol. 2021, 593, 125918. [Google Scholar]
- Zhongqin, L.; Wang, W.; Zhang, M.; Wang, F.; Li, H. Observed changes in streamflow at the headwaters of the Urumqi River, eastern Tianshan, central Asia. Hydrol. Process. Int. J. 2010, 24, 217–224. [Google Scholar]
- Ben, M.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar]
- Valentina, R.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 2014, 42, 37–58. [Google Scholar]
- Michael, Z.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar]
- Andrew, B.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar]
- Yaning, C.; Li, Z.; Fang, G.; Deng, H. Impact of climate change on water resources in the Tianshan Mountians. Cent. Asia. Acta Geogr. Sin. 2017, 72, 18–26. [Google Scholar]
- Yong, Z.; Hirabayashi, Y.; Liu, Q.; Liu, S. Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: Past and future trends. J. Glaciol. 2015, 61, 713–730. [Google Scholar]
- Gu, H.; Wang, X. Performance of the RegCM4. 6 for high-resolution climate and extreme simulations over Tibetan Plateau. Atmosphere 2020, 11, 1104. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Yao, X.; Zhang, M.; Jin, S. Modeling the hydrological response to climate change in a glacierized high mountain region, northwest China. J. Glaciol. 2015, 61, 127–136. [Google Scholar] [CrossRef]
- Nagaveni, C.; Mandla, V.R. Comparative study of GCMs, RCMs, downscaling and hydrological models: A review toward future climate change impact estimation. SN Appl. Sci. 2019, 1, 1698. [Google Scholar]
- Ademe, M.D.; Agumassie, T.A.; Kosgei, J.R.; Andualem, T.G.; Diallo, I. Recent approaches to climate change impacts on hydrological extremes in the Upper Blue Nile Basin, Ethiopia. Earth Syst. Environ. 2022, 6, 669–679. [Google Scholar]
- Wu, J.; Zhao, P.; Nigel, R.; Jonathan, S.; Peng, C. Spatial scaling links the information across scales: A Review of Methodologies Used in Regional Eco-hydrological Modeling. Adv. Earth Sci. 2008, 23, 129. [Google Scholar]
- Ji-Woo, L.; Ham, S.; Hong, S.; Yoshimura, K.; Joh, M. Future changes in surface runoff over Korea projected by a regional climate model under A1B scenario. Adv. Meteorol. 2014, 2014, 753790. [Google Scholar]
- Thomas, S.; Shepherd, A.; McMillan, M.; Leeson, A.; Gilbert, L.; Muir, A.; Munneke, P.K.; Noël, B.; Fettweis, X.; van den Broeke, M. Increased variability in Greenland Ice Sheet runoff from satellite observations. Nat. Commun. 2021, 12, 6069. [Google Scholar]
- Castellano, C.M.; DeGaetano, A.T. A multi-step approach for downscaling daily precipitation extremes from historical analogues. Int. J. Climatol. 2016, 36, 1797–1807. [Google Scholar] [CrossRef]
- Wrzesien, M.L.; Pavelsky, T.M. Projected changes to extreme runoff and precipitation events from a downscaled simulation over the western United States. Front. Earth Sci. 2020, 7, 355. [Google Scholar] [CrossRef]
- Lvliu, L.; Ren, G. Percentile statistical downscaling method and its application in the correction of GCMs daily precipitation in China. Plateau Meteorol. 2012, 31, 715–722. [Google Scholar]
- Jatin, A.; Gosain, A.K.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar]
- Ding, Y.; Zhao, Q.; Wu, J.; Zhang, S.; Wang, S.; Chang, Y.; Li, X.; Shangguan, D.; Han, H.; Qin, J.; et al. The future changes of Chinese cryospheric hydrology and their impacts on water security in arid areas. J. Glaciol. Geocryol. 2020, 42, 23–32. [Google Scholar]
- Gao, H.; Li, H.; Duan, Z.; Ren, Z.; Meng, X.; Pan, X. Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in Central Asia. Sci. Total Environ. 2018, 644, 1160–1170. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Z.; Jin, S.; Xu, C.; Deng, H.; Zhang, M. Runoff changes from Urumqi Glacier no. 1 over the past 60 years, Eastern Tianshan, Central Asia. Water 2020, 12, 1286. [Google Scholar] [CrossRef]
- Peng, J.; Li, Z.; Xu, L.; Ma, Y.; Li, H.; Zhao, W.; Fan, S. Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China. J. Arid Land 2022, 14, 455–472. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Yao, X.; Zhang, M. Analysis on runoff variation of Glacier No. 1 at the headwaters of the Urumqi River from 1959 to 2008. J. Nat. Resour. 2012, 27, 650–660. [Google Scholar]
- Fang, F.; Li, Z.; Zhang, M.; Jin, S.; Wang, F. Hydrochemical characteristics and controls of runoff at the headwaters of the Urumqi River, eastern Tianshan Mountain. Resour. Sci. 2011, 33, 2238–2247. [Google Scholar]
- Mou, L.; Tian, F.; Hu, H. Artificial neural network model of runoff prediction in high and cold mountainous regions: A case study in the source drainage area of Urumqi River. J. Hydroelectr. Eng. 2009, 28, 62–67. [Google Scholar]
- Chris, F.; Istanbulluoglu, E.; Lettenmaier, D.P.; Naz, B.S.; Clarke, G.K.C.; Condom, T.; Burns, P.; Nolin, A.W. Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia. Water Resour. Res. 2015, 51, 9029–9052. [Google Scholar]
- La, F.J.; Mark, B.G. A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog. Phys. Geogr. 2014, 38, 173–200. [Google Scholar]
- Sten, B. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments; SMHI Norrköping: Norrköping, Sweden, 1976. [Google Scholar]
- Li, Z.; Li, H.; Xu, C.; Jia, Y.; Wang, F.; Wang, P.; Yue, X. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia. Sci. Cold Arid Reg. 2021, 12, 380–388. [Google Scholar]
- Jan, S.; Vis, M.J.P. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar]
- Muhammad, A.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar]
- Hong, L.; Beldring, S.; Xu, C.; Jain, S.K. Modelling runoff and its components in Himalayan basins. In Proceedings of the Hydrology in a Changing World: Environmental and Human Dimensions, Montpellier, France, 14 October 2014; Volume 7, pp. 158–164. [Google Scholar]
- Götzinger, J.; Bárdossy, A. Integration and calibration of a conceptual rainfall-runoff model in the framework of a decision support system for river basin management. Adv. Geosci. 2005, 5, 31–35. [Google Scholar] [CrossRef]
- Stefan, U.; Seibert, J.A.; Leibundgut, C.; Rodhe, A. Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure. Hydrol. Sci. J. 1999, 44, 779–797. [Google Scholar]
- Stahl, K.; Moore, R.D.; Shea, J.M.; Hutchinson, D.; Cannon, A.J. Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour. Res. 2008, 44, W02422. [Google Scholar] [CrossRef]
- Hottelet, C.; Braun, L.N.; Leibundgut, C.; Rieg, A. Simulation of Snowpack and Discharge in an Alpine Karst Basin; IAHS Publications-Publications of the International Association of Hydrological Sciences (IAHS): Wallingford, CT, USA; Oxford, UK, 1993. [Google Scholar]
- Markus, K.; Seibert, J. On the value of glacier mass balances for hydrological model calibration. J. Hydrol. 2010, 385, 238–246. [Google Scholar]
- Li, Z. Simulation of Mountain Glaciers Mass Balance and Dynamic Process; Science Press: Beijing, China, 2019. [Google Scholar]
- Jan, S.; Vis, M.J.P.; Kohn, I.; Weiler, M.; Stahl, K. Representing glacier geometry changes in a semi-distributed hydrological model. Hydrol. Earth Syst. Sci. 2018, 22, 2211–2224. [Google Scholar]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the coupled model intercomparison project phase 6 (CMIP6). Adv. Clim. Change Res. 2019, 15, 445. [Google Scholar]
- Veronika, E.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar]
- Hao, G.; Bao, A.; Chen, T.; Zheng, G.; Wang, Y.; Jiang, L.; De Maeyer, P. Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos. Res. 2021, 252, 105451. [Google Scholar]
- Keywan, R.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar]
- Mpelasoka, F.S.; Chiew, F.H.S. Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeorol. 2009, 10, 1168–1183. [Google Scholar] [CrossRef]
- Min, C.; Ding, Y.; Jiang, Z. Extreme precipitation experimentation over eastern China based on L-moment estimation. Plateau Meteorol. 2007, 26, 309–318. [Google Scholar]
- Jiang, Z.; Ding, Y.; Zhu, L.; Zhang, J.; Zhu, L. Extreme precipitation experimentation over eastern China based on Generalized Pareto Distribution. Plateau Meteor 2009, 28, 573–579. [Google Scholar]
- Jie, Y.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 3907–3925. [Google Scholar]
- Filippo, G.; Francisco, R. Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett. 2000, 27, 1295–1298. [Google Scholar]
- Robert, L.W.; Wigley, T.M.; Conway, D.; Jones, P.D.; Hewitson, B.C.; Main, J.; Wilks, D.S. Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res. 1998, 34, 2995–3008. [Google Scholar]
- Wilfried, H.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar]
- Beck, H.E.; van Dijk, A.I.J.; De Roo, A.; Miralles, D.G.; McVicar, T.R.; Schellekens, J.; Bruijnzeel, L.A. Global-scale regionalization of hydrologic model parameters. Water Resour. Res. 2016, 52, 3599–3622. [Google Scholar] [CrossRef]
- Li, H. Spatial and temporal transferability of Degree-Day Model and Simplified Energy Balance Model: A case study. Sci. Cold Arid. Reg. 2020, 12, 95–103. [Google Scholar]
- Wu, L.; Huilin, L.; Lin, W. Application of a degree-day model for determination of mass balance of Urumqi Glacier No. 1, eastern Tianshan, China. J. Earth Sci. 2011, 22, 470–481. [Google Scholar] [CrossRef]
- Huintjes, E.; Hongliang, L.; Sauter, T.; Zhongqin, L.; Schneider, C. Degree-day modelling of the surface mass balance of Urumqi Glacier No. 1, Tian Shan, China. Cryosphere Discuss 2010, 4, 207–232. [Google Scholar]
- Jan, S. ‘HBV Light’, User’s Manual; Uppsala University, Institute of Earth Science, Department of Hydrology: Uppsala, Sweden, 1996. [Google Scholar]
- Regine, H.; Huss, M. Glaciers and climate change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Wang, P.; Li, Z.; Li, H. Ice volume changes and their characteristics for representative glacier against the background of climatic warming—A case study of urumqi glacier No. 1, Tianshan, China. J. Nat. Resour. 2011, 26, 1189–1198. [Google Scholar]
- David, R.; Regine, H.; Fabien, M. Global PyGEM-OGGM Glacier Projections with RCP and SSP Scenarios, Version 1; NASA National Snow and Ice Data Center, Ed.; Distributed Active Archive Center: Sioux Falls, SD, USA, 2022. [Google Scholar]
- Zhang, H.; Wang, F.; Zhou, P.; Xie, Y. Variations and future projections of glacial discharge of Urumqi River Headwaters, eastern Tien Shan (1980s–2017). Adv. Clim. Change Res. 2024, in press. [Google Scholar] [CrossRef]
- Min, Y.; Li, Z.; Anjum, M.N.; Kayastha, R.; Kayastha, R.B.; Rai, M.; Xin, Z.; Xu, C. Projection of streamflow changes under CMIP6 scenarios in the Urumqi River head watershed, Tianshan Mountain, China. Front. Earth Sci. 2022, 10, 857854. [Google Scholar]
- Sasha, N. Commentary on the contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. S. Afr. J. Sci. 2022, 118, 1–4. [Google Scholar]
- Shi, Y. Features and tendency of global warming and its implications for China. J. Nat. Disasters 1996, 5, 5–14. [Google Scholar]
- Oerlemans, J.; Anderson, B.; Hubbard, A.; Huybrechts, P.; Johannesson, T.; Knap, W.H.; Schmeits, M.; Stroeven, A.P.; Van de Wal, R.S.; Wallinga, J. Modelling the response of glaciers to climate warming. Clim. Dyn. 1998, 14, 267–274. [Google Scholar] [CrossRef]
- Atsumu, O.; Kasser, P.; Funk, M. Climate at the equilibrium line of glaciers. J. Glaciol. 1992, 38, 397–411. [Google Scholar]
Meteorological Station | Elevation (m a.s.l.) | Latitude (°N) | Longitude (°E) | Air Pressure | Air Temperature | Precipitation | Radiation | Relative Humidity | Snow Depth | Wind Speed and Direction |
---|---|---|---|---|---|---|---|---|---|---|
Daxigou | 3539 | 43.113 | 86.843 | Vaisala PTB 110 | Campbell Scientific CS215 | Geonor T200B | Kipp&Zonen CNR4 | Campbell Scientific CS215 | Campbell Scientific SR50A | Young 05103 |
Hydrometeorological Stations | Elevation (m a.s.l.) | Latitude (°N) | Longitude (°E) | Catchment Area (km2) | Glaciation (%) | Measuring Principle |
---|---|---|---|---|---|---|
Zongkong | 3405 | 43.117 | 86.870 | 28.9 | 12 | Planar microstrip array antenna CW + PCR |
Satellite | Sensor | Launch Date | Resolution | Spectral Range | Bit Depth | Repeat Cycle | Data Format | Sampling Method |
---|---|---|---|---|---|---|---|---|
Landsat 8 | OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) | 11 February 2013 | 30 m | OLI: 0.433–2.355 μm (11 bands), TIRS: 10.60–12.51 μm (2 bands) | 12 bits | 16 days | GeoTIFF, JPEG | triple convolution |
Landsat 4–5 TM | TM (Thematic Mapper) | Landsat 4: 16 July 1982; Landsat 5: 1 March 1984 | 30 m | TM: 0.45–12.50 μm (7 visible and infrared bands), TIRS: 10.40–12.50 μm (1 band) | 8 bits (multispectral) or 6 bits (thermal) | 16 days | GeoTIFF, JPEG | triple convolution |
Variable | b | R2 | ||||
---|---|---|---|---|---|---|
T (°C) | 0.14 | −0.16 | 0.21 | 0.81 | −0.48 | 0.963 |
P (mm) | 1.70 | −0.68 | −0.64 | 0.24 | 0.88 | 0.996 |
Calibration | Validation | ||||||||
---|---|---|---|---|---|---|---|---|---|
Period | Qobs | Qsim | R2 | Reff | Period | Qobs | Qsim | R2 | Reff |
1997–2006 | 1734.53 | 1651.16 | 0.69 | 0.68 | 2007–2016 | 1966.93 | 1762.31 | 0.79 | 0.78 |
Parameter | Description | Value | Units |
---|---|---|---|
Temperature and precipitation gradients | |||
PCALT | Precipitation gradient | 3 | %/100 m |
TCALT | Temperature gradient | 0.7 | °C/100 m |
Snow routine | |||
TT | threshold temperature | 2 | °C |
CFMAX | degree-day factor of snow | 5.19 | mm·(°C·d) −1 |
SP | seasonal variability | 0.1 | − |
SFCF | snowfall correction factor (−) | 0.738 | − |
CFR | refreezing coefficient (−) | 0.05 | − |
CWH | water holding capacity (−) | 0.0002 | − |
Soil routine | |||
FC | maximum soil moisture storage | 500 | mm |
LP | soil moisture threshold for AET to reach PET | 0.22 | − |
BETA | parameter determining runoff contribution from rain or snowmelt | 2.40 | − |
Glacier routine | |||
CFGlacier | glacier correction factor | 0.48 | − |
CFSlope | slope correction factor | 2.45 | − |
KSI | snow to ice conversion factor | 0.001 | d−1 |
KGmin | minimum outflow coefficient | 0.18 | d−1 |
dKG | outflow coefficient range | 0.0001 | d−1 |
AG | calibration parameter | 0.75 | mm−1 |
Response routine | |||
PERC | threshold parameter | 0.75 | mm/d |
UZL | threshold parameter | 50 | mm |
K0 | storage coefficient 0 | 0.19 | d−1 |
K1 | storage coefficient 1 | 0.19 | d−1 |
K2 | storage coefficient 2 | 0.0001 | d−1 |
Routing routine | |||
MAXBAS | length of triangular weighting function | 1 | − |
Period | Contribution (%) | ||
---|---|---|---|
Rain | Glacier Meltwater | Snowmelt | |
1997–2006 (calibration period) | 27.49% | 42.10% | 30.40% |
2007–2016 (validation period) | 26.56% | 43.79% | 29.64% |
Climate Scenarios | Glacier Scenarios | ||
---|---|---|---|
100% Glaciation | 50% Glaciation | 0% Glaciation | |
SSP1−26 | 10.58% | −15.70% | −41.03% |
SSP2−45 | 34.38% | 4.97% | −23.26% |
SSP5−85 | 12.04% | −19.44% | −50.03% |
Parameter | Temperature | Precipitation | Temperature and Precipitation | |||||
---|---|---|---|---|---|---|---|---|
Experiment | T + 1.5 °C | T − 1.5 °C | P + 20% | P − 20% | T + 1.5 °C P + 20% | T − 1.5 °C P + 20% | T + 1.5 °C P − 20% | T − 1.5 °C P − 20% |
Runoff change (%) | 33.10% | −41.14% | 1.81% | −15.50% | 45.67% | −35.81% | 22.06% | −46.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Li, Z.; Li, H.; Xu, C.; Mu, J.; Yang, Y. The Impact of Glacial Shrinkage on Future Streamflow in the Urumqi River Source Region of Eastern Tien Shan, Central Asia. Remote Sens. 2024, 16, 2546. https://doi.org/10.3390/rs16142546
Zhao W, Li Z, Li H, Xu C, Mu J, Yang Y. The Impact of Glacial Shrinkage on Future Streamflow in the Urumqi River Source Region of Eastern Tien Shan, Central Asia. Remote Sensing. 2024; 16(14):2546. https://doi.org/10.3390/rs16142546
Chicago/Turabian StyleZhao, Weibo, Zhongqin Li, Hongliang Li, Chunhai Xu, Jianxin Mu, and Yefei Yang. 2024. "The Impact of Glacial Shrinkage on Future Streamflow in the Urumqi River Source Region of Eastern Tien Shan, Central Asia" Remote Sensing 16, no. 14: 2546. https://doi.org/10.3390/rs16142546
APA StyleZhao, W., Li, Z., Li, H., Xu, C., Mu, J., & Yang, Y. (2024). The Impact of Glacial Shrinkage on Future Streamflow in the Urumqi River Source Region of Eastern Tien Shan, Central Asia. Remote Sensing, 16(14), 2546. https://doi.org/10.3390/rs16142546