Assessment of Land Suitability Potential Using Ensemble Approaches of Advanced Multi-Criteria Decision Models and Machine Learning for Wheat Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area Description
2.2. Soil and Yield Sample Collection
2.3. Yield Samples Collection
2.4. Land Suitability Assessment
2.4.1. Diagnostic Attribute
2.4.2. Diagnostic Attributes Weights
2.4.3. Rating Values for Selected Attributes
2.4.4. An Overview of the Proposed Method
2.4.5. Comparison and Validation of Methods for Determining Land Suitability Values
2.4.6. Mapping and Modeling of Land Suitability Values
2.4.7. Classification of the Land Suitability Value
- -
- Determine the range: The range of land suitability values for each method has been determined. This range is the difference between the maximum and minimum suitability values obtained with each method.
- -
- Divide into intervals: The total range of values was divided into three equal intervals. These intervals correspond to the categories of land suitability: high, medium, and low.
- -
- Define interval boundaries: The first interval (low suitability) starts at the minimum score and extends to the value that marks the end of the first third of the range. The second interval (medium suitability) starts at the end of the first interval and extends to the end of the second third of the range. The third interval (high suitability) starts at the end of the second interval and extends to the maximum score.
- -
2.4.8. Spatial Autocorrelation Analysis
3. Results
3.1. The Statistical Description of Soil Properties
3.2. Calculated Weighting of the Attributes
3.3. Determination and Validation of the Land Suitability Value
3.4. Land Suitability Value and Key Attribute Mapping
3.5. Spatial Autocorrelation Analysis
4. Discussion
4.1. Key Attributes for Wheat Cultivation
4.2. Evaluation of the MCDM Techniques
4.3. Mapping and Modeling the Land Suitability Values
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pozza, L.E.; Field, D.J. The Science of Soil Security and Food Security. Soil Secur. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Keating, B.A.; Herrero, M.; Carberry, P.S.; Gardner, J.; Cole, M.B. Food Wedges: Framing the Global Food Demand and Supply Challenge towards 2050. Glob. Food Secur. 2014, 3, 125–132. [Google Scholar] [CrossRef]
- Rahmani, M.; Lotfata, A.; Zebardast, E.; Rastegar, S.; Sanchez, T.W.; Goharrizi, B.A.; Landi, S. Land Use Suitability Assessment for Economic Development at the Provincial Level: The Case Study of Yazd Province, Iran. Sustain. Cities Soc. 2022, 87, 104163. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Remote Sensing-Based Detection of Agricultural Land Losses around Greater Cairo since the Egyptian Revolution of 2011. Land Use Policy 2020, 97, 104744. [Google Scholar] [CrossRef]
- Rossiter, D.G. A Theoretical Framework for Land Evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Abbasi, M.; Pishvaee, M.S.; Bairamzadeh, S. Land Suitability Assessment for Paulownia Cultivation Using Combined GIS and Z-Number DEA: A Case Study. Comput. Electron. Agric. 2020, 176, 105666. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Review—Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Dornik, A.; Cheţan, M.A.; Drăguţ, L.; Iliuţă, A.; Dicu, D.D. Importance of the Mapping Unit on the Land Suitability Assessment for Agriculture. Comput. Electron. Agric. 2022, 201, 107305. [Google Scholar] [CrossRef]
- Keson, J.; Silalertruksa, T.; Gheewala, S.H. Land Suitability Class and Implications to Land-Water-Food Nexus: A Case of Rice Cultivation in Thailand. Energy Nexus 2023, 10, 100205. [Google Scholar] [CrossRef]
- Xue, L.; Cao, P.; Xu, D.; Guo, Y.; Wang, Q.; Zheng, X.; Han, R.; You, A. Agricultural Land Suitability Analysis for an Integrated Rice–Crayfish Culture Using a Fuzzy AHP and GIS in Central China. Ecol. Indic. 2023, 148, 109837. [Google Scholar] [CrossRef]
- Sys, C.; Van Ranst, E.; Debaveye, J. Land Evaluation. Part I: Principles in Land Evaluation and Crop Production Calculations; Agricultural Publications Nr. 7, G.A.D.C: Brussels, Belgium, 1991. [Google Scholar]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Bagheri Bodaghabadi, M.; Martínez-Casasnovas, J.A.; Khakili, P.; Masihabadi, M.H.; Gandomkar, A. Assessment of the FAO Traditional Land Evaluation Methods, A Case Study: Iranian Land Classification Method. Soil Use Manag. 2015, 31, 384–396. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A Review of Multi Criteria Decision Making (MCDM) towards Sustainable Renewable Energy Development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Moisa, M.B.; Tiye, F.S.; Dejene, I.N.; Gemeda, D.O. Land Suitability Analysis for Maize Production Using Geospatial Technologies in the Didessa Watershed, Ethiopia. Artif. Intell. Agric. 2022, 6, 34–46. [Google Scholar] [CrossRef]
- Osei-Gyabaah, A.P.; Antwi, M.; Addo, S.; Osei, P. Land Suitability Analysis for Cocoa (Theobroma cacao) Production in the Sunyani Municipality, Bono Region, Ghana. Smart Agric. Technol. 2023, 5, 100262. [Google Scholar] [CrossRef]
- Sadiq, F.K.; Ya’u, S.L.; Aliyu, J.; Maniyunda, L.M. Evaluation of Land Suitability for Soybean Production Using GIS-Based Multi-Criteria Approach in Kudan Local Government Area of Kaduna State Nigeria. Environ. Sustain. Indic. 2023, 20, 100297. [Google Scholar] [CrossRef]
- Cano, P.B.; Cabrini, S.M.; Peper, A.M.; Poggio, S.L. Multi-Criteria Assessment of Cropping Systems for the Sustainable Intensification in the Pampas. Agric. Syst. 2023, 210, 103723. [Google Scholar] [CrossRef]
- Foroozesh, F.; Monavari, S.M.; Salmanmahiny, A.; Robati, M.; Rahimi, R. Assessment of Sustainable Urban Development Based on a Hybrid Decision-Making Approach: Group Fuzzy BWM, AHP, and TOPSIS–GIS. Sustain. Cities Soc. 2022, 76, 103402. [Google Scholar] [CrossRef]
- Hooshangi, N.; Mahdizadeh Gharakhanlou, N.; Ghaffari Razin, S.R. Evaluation of Potential Sites in Iran to Localize Solar Farms Using a GIS-Based Fermatean Fuzzy TOPSIS. J. Clean. Prod. 2023, 384, 135481. [Google Scholar] [CrossRef]
- Pophali, G.R.; Chelani, A.B.; Dhodapkar, R.S. Optimal Selection of Full Scale Tannery Effluent Treatment Alternative Using Integrated AHP and GRA Approach. Expert Syst. Appl. 2011, 38, 10889–10895. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Sheikhpour, R.; Zeraatpisheh, M.; Amirian-Chakan, A.; Toomanian, N.; Kerry, R.; Scholten, T. Semi-Supervised Learning for the Spatial Extrapolation of Soil Information. Geoderma 2022, 426, 116094. [Google Scholar] [CrossRef]
- Sujatha, M.; Jaidhar, C.D. Machine Learning-Based Approaches to Enhance the Soil Fertility—A Review. Expert Syst. Appl. 2024, 240, 122557. [Google Scholar] [CrossRef]
- Yousheng, D.; Keqin, Z.; Zhongju, F.; Wen, Z.; Xinjun, Z.; Huiling, Z. Machine Learning Based Prediction Model for the Pile Bearing Capacity of Saline Soils in Cold Regions. Structures 2024, 59, 105735. [Google Scholar] [CrossRef]
- Shahabi, A.; Nabiollahi, K.; Davari, M.; Zeraatpisheh, M.; Heung, B.; Scholten, T.; Taghizadeh-Mehrjardi, R. Spatial Prediction of Soil Properties through Hybridized Random Forest Model and Combination of Reflectance Spectroscopy and Environmental Covariates. Geocarto Int. 2022, 37, 18172–18195. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Hussain, I. Prediction of Wheat Production Using Machine Learning Algorithms in Northern Areas of Pakistan. Telecommun. Policy 2022, 46, 102370. [Google Scholar] [CrossRef]
- Naghdyzadegan Jahromi, M.; Zand-Parsa, S.; Razzaghi, F.; Jamshidi, S.; Didari, S.; Doosthosseini, A.; Pourghasemi, H.R. Developing Machine Learning Models for Wheat Yield Prediction Using Ground-Based Data, Satellite-Based Actual Evapotranspiration and Vegetation Indices. Eur. J. Agron. 2023, 146, 126820. [Google Scholar] [CrossRef]
- Saha, S.; Mondal, P. Estimation of the Effectiveness of Multi-Criteria Decision Analysis and Machine Learning Approaches for Agricultural Land Capability in Gangarampur Subdivision, Eastern India. Artif. Intell. Geosci. 2022, 3, 179–191. [Google Scholar] [CrossRef]
- Sarkar, D.; Saha, S.; Maitra, M.; Mondal, P. Site Suitability for Aromatic Rice Cultivation by Integrating Geo-Spatial and Machine Learning Algorithms in Kaliyaganj C.D. Block, India. Artif. Intell. Geosci. 2021, 2, 179–191. [Google Scholar] [CrossRef]
- Pakrooh, P.; Kamal, M.A. Modeling the Potential Impacts of Climate Change on Wheat Yield in Iran: Evidence from National and Provincial Data Analysis. Ecol. Model. 2023, 486, 110513. [Google Scholar] [CrossRef]
- Mesgaran, M.B.; Madani, K.; Hashemi, H.; Azadi, P. Iran’s Land Suitability for Agriculture. Sci. Rep. 2017, 7, 7670. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Keys to Soil Taxonomy, 12th ed.; United Soil Survey Staff: Washington, DC, USA, 2014.
- World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN 978-92-5-108369-7.
- Toomanian, N.; Jalalian, A.; Khademi, H.; Eghbal, M.K.; Papritz, A. Pedodiversity and Pedogenesis in Zayandeh-Rud Valley, Central Iran. Geomorphology 2006, 81, 376–393. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Field Book for Describing and Sampling Soils; Government Printing Office: Washington, DC, USA, 2012; ISBN 978-0-16-091542-0. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 539–579. ISBN 978-0-89118-977-0. [Google Scholar]
- Mclean, E.O. Soil pH and Lime Requirement. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 199–224. ISBN 978-0-89118-977-0. [Google Scholar]
- Rhoades, J.D. Soluble Salts. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 167–179. ISBN 978-0-89118-977-0. [Google Scholar]
- Buchan, G.D.; Grewal, K.S.; Claydon, J.J.; Mcpherson, R.J. A Ccomparison of Sedigraph and Pipette Methods for Soil Particle-Size Analysis. Soil Res. 1993, 31, 407–417. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-0-89118-825-4. [Google Scholar]
- Gee, G.W.; Or, D. 2.4 Particle-Size Analysis. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 255–293. ISBN 978-0-89118-893-3. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. (Eds.) Soil Sampling and Methods of Analysis, 2nd ed.; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-8493-3586-0. [Google Scholar]
- Brown, J.G.; Lilleland, O. Rapid Determination of Potassium and Sodium in Plant Materials and Soil Extracts by Flame Photometry. Am. Soc. Hortic. Sci. 1946, 48, 341–345. [Google Scholar]
- Gavshan Synoptic Weather Station Data Iran Meteorological Organization. Available online: http://www.kurdistanmet.ir/fa/Reading/%D8%A7%DB%8C%D8%B3%D8%AA%DA%AF%D8%A7%D9%87%D9%87%D8%A7%DB%8C-%D8%A8%D8%A7%D8%B1%D8%A7%D9%86-%D8%B3%D9%86%D8%AC%DB%8C (accessed on 1 July 2024).
- niafam.com. National Cartographic Center of Iran. Available online: https://en.ncc.gov.ir/Services (accessed on 1 July 2024).
- Javadi, A.; Rahmati, M.H.; Tabatabaeefar, A. Sustainable Tillage Methods for Irrigated Wheat Production in Different Regions of Iran. Soil Tillage Res. 2009, 104, 143–149. [Google Scholar] [CrossRef]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated Fuzzy, AHP and GIS Techniques for Land Suitability Assessment in Semi-Arid Regions for Wheat and Maize Farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Gholizadeh, A. Modeling Land Suitability Evaluation for Wheat Production by Parametric and TOPSIS Approaches Using GIS, Northeast of Iran. Model. Earth Syst. Environ. 2016, 2, 126. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Mansouri Daneshvar, M.R. Qualitative Land Suitability Evaluation for Wheat and Barley Crops in Khorasan-Razavi Province, Northeast of Iran. Agric. Res. 2014, 3, 155–164. [Google Scholar] [CrossRef]
- Karimi, F.; Sultana, S.; Shirzadi Babakan, A.; Royall, D. Land Suitability Evaluation for Organic Agriculture of Wheat Using GIS and Multicriteria Analysis. Pap. Appl. Geogr. 2018, 4, 326–342. [Google Scholar] [CrossRef]
- Givi, J. Qualitative Evaluation of Land Suitability for Field and Fruit Crops. Available online: http://www.swri.ir/en-US/DouranPortal/5223/page/Recent-Publications (accessed on 1 July 2024).
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s Entropy and Multi Attribute Decision Making. Entropy 2010, 12, 53–62. [Google Scholar] [CrossRef]
- Lee, H.-C.; Chang, C.-T. Comparative Analysis of MCDM Methods for Ranking Renewable Energy Sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Hafezalkotob, A.; Hafezalkotob, A. Extended MULTIMOORA Method Based on Shannon Entropy Weight for Materials Selection. J. Ind. Eng. Int. 2016, 12, 1–13. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; Ghorbani, M.A.; Shahbazi, F. Application of SAW, TOPSIS and Fuzzy TOPSIS Models in Cultivation Priority Planning for Maize, Rapeseed and Soybean Crops. Geoderma 2018, 310, 178–190. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, Z.; Wang, Y. A Novel Hybrid MCDM Model Combining the SAW, TOPSIS and GRA Methods Based on Experimental Design. Inf. Sci. 2016, 345, 27–45. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-48318-9. [Google Scholar]
- Cao, W.; Xuan, X.; Wu, W.; Chen, L.; Zhang, Q. A New Method for Determining the Optimal Adaptive Thermal Comfort Model with Grey Relational Analysis. Build. Environ. 2022, 221, 109277. [Google Scholar] [CrossRef]
- Yuce, B.E.; Nielsen, P.V.; Wargocki, P. The Use of Taguchi, ANOVA, and GRA Methods to Optimize CFD Analyses of Ventilation Performance in Buildings. Build. Environ. 2022, 225, 109587. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Taghizadeh-Mehrjardi, R.; Shahabi, A.; Heung, B.; Amirian-Chakan, A.; Davari, M.; Scholten, T. Assessing Agricultural Salt-Affected Land Using Digital Soil Mapping and Hybridized Random Forests. Geoderma 2021, 385, 114858. [Google Scholar] [CrossRef]
- Azizi, K.; Ayoubi, S.; Nabiollahi, K.; Garosi, Y.; Gislum, R. Predicting Heavy Metal Contents by Applying Machine Learning Approaches and Environmental Covariates in West of Iran. J. Geochem. Explor. 2022, 233, 106921. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Demattê, J.A.M.; Rosin, N.A.; Campos, L.R.; Tayebi, M.; Bonfatti, B.R.; Ayoubi, S.; Tajik, S.; Afshar, F.A.; Jafari, A.; et al. High Resolution Middle Eastern Soil Attributes Mapping via Open Data and Cloud Computing. Geoderma 2021, 385, 114890. [Google Scholar] [CrossRef]
- Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.-M. Random Forests for Global Sensitivity Analysis: A Selective Review. Reliab. Eng. Syst. Saf. 2021, 206, 107312. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Olaya, V.; Conrad, O. Chapter 12 Geomorphometry in SAGA. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry, Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 293–308. [Google Scholar]
- Sánchez-Navarro, A.; Gil-Vázquez, J.M.; Delgado-Iniesta, M.J.; Marín-Sanleandro, P.; Blanco-Bernardeau, A.; Ortiz-Silla, R. Establishing an Index and Identification of Limiting Parameters for Characterizing Soil Quality in Mediterranean Ecosystems. Catena 2015, 131, 35–45. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Moradian, S. Assessment of Soil Quality Indices for Salt-Affected Agricultural Land in Kurdistan Province, Iran. Ecol. Indic. 2017, 83, 482–494. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation: A Primer; Resource publications in geography; Association of American Geographers: Washington, DC, USA, 1987; ISBN 978-0-89291-197-4. [Google Scholar]
- Liu, S.; Wang, R.; Yang, Y.; Shi, W.; Jiang, K.; Jia, L.; Zhang, F.; Liu, X.; Ma, L.; Li, C.; et al. Changes in Soil Aggregate Stability and Aggregate-Associated Carbon under Different Slope Positions in a Karst Region of Southwest China. Sci. Total Environ. 2024, 928, 172534. [Google Scholar] [CrossRef] [PubMed]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the Effects of Slope Gradient and Land Use Change on Soil Quality Degradation through Digital Mapping of Soil Quality Indices and Soil Loss Rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Ajami, M.; Heidari, A.; Khormali, F.; Gorji, M.; Ayoubi, S. Environmental Factors Controlling Soil Organic Carbon Storage in Loess Soils of a Subhumid Region, Northern Iran. Geoderma 2016, 281, 1–10. [Google Scholar] [CrossRef]
- Dedeoğlu, M.; Dengiz, O. Generating of Land Suitability Index for Wheat with Hybrid System Aproach Using AHP and GIS. Comput. Electron. Agric. 2019, 167, 105062. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Stakeholder Perceptions in Flood Risk Assessment: A Hybrid Fuzzy AHP-TOPSIS Approach for Istanbul, Turkey. Int. J. Disaster Risk Reduct. 2021, 60, 102327. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, X. Evaluating Water Resource Carrying Capacity in Pearl River-West River Economic Belt Based on Portfolio Weights and GRA-TOPSIS-CCDM. Ecol. Indic. 2024, 161, 111942. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y. Mapping the Ratoon Rice Suitability Region in China Using Random Forest and Recursive Feature Elimination Modeling. Field Crops Res. 2023, 301, 109016. [Google Scholar] [CrossRef]
Code | Landscape | Landform | Lithology | Geomorphological Surface |
---|---|---|---|---|
Hi111 | Hill | Highly eroded hill | Shale and sandstone | Hill with high topography |
Hi211 | Moderately eroded hill | Limestone and sandstone | Hill with high topography | |
Mo111 | Mountain | Rock outcrop | Limestone | Eroded rock surface |
Mo121 | Sandstone and conglomerate | Eroded rock surface | ||
Pi111 | Piedmont | Alluvial fan | Alluvial fan | Moderate to high slop |
Pi121 | Moderate slope | |||
Pi211 | Pediment | Medium-level alluvial deposits | Low slope | |
Pi212 | Moderate slope | |||
Pl111 | Plain | Flat | Recent alluvium | Low slope |
Pl211 | Alluvial terrace | Medium-level alluvial deposits | Cultivated (moderate to few slopes) |
Property | Rating Scale | |||||
---|---|---|---|---|---|---|
100–95 | 95–85 | 85–60 | 60–40 | 40–25 | 25–0 | |
Slope (%) | 0–2 | 2–5 | 5–8 | 8–16 | 16–25 | >25 |
EC (dS m−1) | 0–4 | 4–8 | 8–12 | 12–16 | 16–24 | >24 |
Soil texture | SiCL, SiC, SiL, C | SCL, LSC, CL | SL, Cm, C, SiCm | LS | S | |
Gravel (%) | 0–3 | 3–15 | 15–35 | 35–55 | - | >55 |
CCE (%) | 3–20 | <320–35 | 35–50 | 50–60 | >60 | |
OC (%) | >0.6 | 0.6–0.4 | <0.4 | - | - | - |
CEC (Cmol + kg−1) | 24> | 24–16 | 16> | - | - | - |
Soil depth (cm) | >100 | 100–60 | 30–60 | 20–30 | <20 |
Sand | Clay | Silt | OC | Gravel | CCE | EC | CEC | pH | |
---|---|---|---|---|---|---|---|---|---|
% | dS m−1 | cmol + kg−1 | |||||||
Number | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Mean | 42.52 | 28.78 | 28.67 | 0.81 | 27.54 | 14.3 | 0.59 | 11.49 | 7.52 |
Minimum | 19.92 | 12.00 | 9.20 | 0.15 | 7.47 | 2.37 | 0.20 | 2.17 | 7.00 |
Maximum | 66.19 | 45.00 | 43.00 | 1.60 | 47.42 | 38.00 | 1.50 | 23.63 | 7.90 |
Skewness | 0.17 | 0.20 | −0.29 | 0.20 | 0.49 | 0.77 | 1.30 | 0.38 | −0.53 |
Kurtosis | −0.29 | −0.14 | 1.11 | −0.27 | −1.09 | 0.82 | 2.35 | −0.27 | 1.24 |
CV | 44.17 | 21.02 | 24.72 | 38.51 | 40.48 | 49.95 | 41.05 | 41.02 | 2.15 |
Slope | OC | CEC | Texture | EC | CCE | Gravel | Soil Thickness | |
---|---|---|---|---|---|---|---|---|
Weight | 0.439 | 0.135 | 0.108 | 0.010 | 0.086 | 0.090 | 0.077 | 0.054 |
TOPSIS | SAW | GRA | Slope % | OC % | CEC (cmol + kg−1) | Yield (ton ha−1) | |
---|---|---|---|---|---|---|---|
Mean | 0.31 | 0.15 | 0.27 | 15 | 0.81 | 11.49 | 1.14 |
Maximum | 0.51 | 0.21 | 0.44 | 79 | 1.60 | 23.63 | 1.75 |
Minimum | 0.06 | 0.06 | 014 | 0 | 0.15 | 2.17 | 0.5 |
Good class range | 0.34–0.44 | 0.38–0.52 | 0.34–0.44 | <5 | 1< | 15 | 1.4< |
Medium class range | 0.24–0.34 | 0.24–0.38 | 0.24–0.34 | 5–10 | 0.5–1 | 10–15 | 1–1.4 |
Weak class range | 0.14–0.24 | 0.10–0.24 | 0.14–0.24 | 5< | <0.5 | <10 | 0.5–1 |
GRA | TOPSIS | SAW | |
---|---|---|---|
RMSE | 0.072 | 0.081 | 0.061 |
MAE | 0.005 | 0.017 | 0.003 |
R2 | 0.83 | 0.80 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabiollahi, K.; M. Kebonye, N.; Molani, F.; Tahari-Mehrjardi, M.H.; Taghizadeh-Mehrjardi, R.; Shokati, H.; Scholten, T. Assessment of Land Suitability Potential Using Ensemble Approaches of Advanced Multi-Criteria Decision Models and Machine Learning for Wheat Cultivation. Remote Sens. 2024, 16, 2566. https://doi.org/10.3390/rs16142566
Nabiollahi K, M. Kebonye N, Molani F, Tahari-Mehrjardi MH, Taghizadeh-Mehrjardi R, Shokati H, Scholten T. Assessment of Land Suitability Potential Using Ensemble Approaches of Advanced Multi-Criteria Decision Models and Machine Learning for Wheat Cultivation. Remote Sensing. 2024; 16(14):2566. https://doi.org/10.3390/rs16142566
Chicago/Turabian StyleNabiollahi, Kamal, Ndiye M. Kebonye, Fereshteh Molani, Mohammad Hossein Tahari-Mehrjardi, Ruhollah Taghizadeh-Mehrjardi, Hadi Shokati, and Thomas Scholten. 2024. "Assessment of Land Suitability Potential Using Ensemble Approaches of Advanced Multi-Criteria Decision Models and Machine Learning for Wheat Cultivation" Remote Sensing 16, no. 14: 2566. https://doi.org/10.3390/rs16142566
APA StyleNabiollahi, K., M. Kebonye, N., Molani, F., Tahari-Mehrjardi, M. H., Taghizadeh-Mehrjardi, R., Shokati, H., & Scholten, T. (2024). Assessment of Land Suitability Potential Using Ensemble Approaches of Advanced Multi-Criteria Decision Models and Machine Learning for Wheat Cultivation. Remote Sensing, 16(14), 2566. https://doi.org/10.3390/rs16142566