Effect of Tropical Cyclone Wind Forcing on Improving Upper Ocean Simulation: An Idealized Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ocean Circulation Model
2.2. Idealized TC Wind Model
2.3. Experimental Design
2.4. Evaluation Metrics
3. Results and Discussion
3.1. The Impact of Wind Forcing on Temperature Responses
3.2. The Impact of Wind Forcing on Current Responses
3.3. The Impact of TC Translation Speed on Oceanic Responses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bender, M.A.; Ginis, I.; Tuleya, R.; Thomas, B.; Marchok, T. The Operational GFDL Coupled Hurricane–Ocean Prediction System and a Summary of Its Performance. Mon. Weather Rev. 2007, 135, 3965–3989. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K. Recent Developments in the Fluid Dynamics of Tropical Cyclones. Annu. Rev. Fluid Mech. 2017, 49, 541–574. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Reinhart, B.J.; Martinez, J. National Hurricane Center Forecast Verification Report 2023 Hurricane Season. NOAA/NWS/NCEP/National Hurricane Center, Miami. 2024. Available online: https://www.nhc.noaa.gov/verification/pdfs/Verification_2023.pdf (accessed on 6 June 2024).
- Montgomery, M.T.; Smith, R.K. Paradigms for Tropical Cyclone Intensification. Aust. Meteorol. Oceanogr. J. 2014, 64, 37–66. [Google Scholar] [CrossRef]
- Dawe, J.T.; Thompson, L. Effect of Ocean Surface Currents on Wind Stress, Heat Flux, and Wind Power Input to the Ocean. Geophys. Res. Lett. 2006, 33, 2006GL025784. [Google Scholar] [CrossRef]
- Deng, Z.; Xie, L.; Liu, B.; Wu, K.; Zhao, D.; Yu, T. Coupling Winds to Ocean Surface Currents over the Global Ocean. Ocean Model. 2009, 29, 261–268. [Google Scholar] [CrossRef]
- Morey, S.L.; Bourassa, M.A.; Dukhovskoy, D.S.; O’Brien, J.J. Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn. 2006, 56, 594–606. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Esch, M. Tropical Cyclones in a T159 Resolution Global Climate Model: Comparison with Observations and Re−Analyses. Tellus Dyn. Meteorol. Oceanogr. 2007, 59, 396–416. [Google Scholar] [CrossRef]
- LaRow, T. An Analysis of Tropical Cyclones Impacting the Southeast United States from a Regional Reanalysis. Reg. Environ. Chang. 2013, 13, 35–43. [Google Scholar] [CrossRef]
- Schenkel, B.A.; Hart, R.E. An Examination of Tropical Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric Reanalysis Datasets. J. Clim. 2012, 25, 3453–3475. [Google Scholar] [CrossRef]
- Hodges, K.; Cobb, A.; Vidale, P.L. How Well Are Tropical Cyclones Represented in Reanalysis Datasets? J. Clim. 2017, 30, 5243–5264. [Google Scholar] [CrossRef]
- Signell, R.P.; Carniel, S.; Cavaleri, L.; Chiggiato, J.; Doyle, J.D.; Pullen, J.; Sclavo, M. Assessment of Wind Quality for Oceanographic Modelling in Semi−Enclosed Basins. J. Mar. Syst. 2005, 53, 217–233. [Google Scholar] [CrossRef]
- Schenkel, B.A.; Lin, N.; Chavas, D.; Oppenheimer, M.; Brammer, A. Evaluating Outer Tropical Cyclone Size in Reanalysis Datasets Using QuikSCAT Data. J. Clim. 2017, 30, 8745–8762. [Google Scholar] [CrossRef]
- Rayson, M.D.; Ivey, G.N.; Jones, N.L.; Lowe, R.J.; Wake, G.W.; McConochie, J.D. Near−inertial ocean response to tropical cyclone forcing on the Australian North−West Shelf. J. Geophys. Res. Oceans 2015, 120, 7722–7751. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed Upper Ocean Response to Typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Oceans 2014, 119, 3134–3157. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, B.; Liu, G.; Li, X.; Zhang, H.; He, Y. Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple−Satellite Observations and Numerical Simulations. Remote Sens. 2018, 10, 348. [Google Scholar] [CrossRef]
- Köhler, J.; Völker, G.S.; Walter, M. Response of the Internal Wave Field to Remote Wind Forcing by Tropical Cyclones. J. Phys. Oceanogr. 2018, 48, 317–328. [Google Scholar] [CrossRef]
- Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Aerts, J.C.J.H. Advancing Global Storm Surge Modelling Using the New ERA5 Climate Reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [Google Scholar] [CrossRef]
- Greenslade, D.; Taylor, A.; Freeman, J.; Sims, H.; Schulz, E.; Colberg, F.; Divakaran, P.; Velie, M.; Kepert, J. A First Generation Dynamical Tropical Cyclone Storm Surge Forecast System: Part 1: Hydrodynamic Model; Australian Bureau of Meteorology: Melbourne, Australian, 2018. Available online: http://www.bom.gov.au/research/publications/researchreports/BRR-031.pdf (accessed on 6 June 2024).
- Yue, X.; Zhang, B. Impact of Satellite Wind on Improving Simulation of the Upper Ocean Response to Tropical Cyclones. Remote Sens. 2024, 16, 1832. [Google Scholar] [CrossRef]
- Sanford, T.B.; Price, J.F.; Girton, J.B.; Webb, D.C. Highly Resolved Observations and Simulations of the Ocean Response to a Hurricane. Geophys. Res. Lett. 2007, 34, 2007GL029679. [Google Scholar] [CrossRef]
- Holland, G.J. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Rahn, M.E. Parametric Representation of the Primary Hurricane Vortex. Part I: Observations and Evaluation of the Holland (1980) Model. Mon. Weather Rev. 2004, 132, 3033–3048. [Google Scholar] [CrossRef]
- Ueno, T. Numerical Computations of the Storm Surges in Tosa Bay. J. Oceanogr. Soc. Jpn. 1981, 37, 61–73. [Google Scholar] [CrossRef]
- Wang, P.; Sheng, J. A Comparative Study of Wave−current Interactions over the Eastern Canadian Shelf under Severe Weather Conditions Using a Coupled Wave−circulation Model. J. Geophys. Res. Oceans 2016, 121, 5252–5281. [Google Scholar] [CrossRef]
- Yin, X.; Wang, Z.; Liu, Y.; Xu, Y. Ocean Response to Typhoon Ketsana Traveling over the Northwest Pacific and a Numerical Model Approach. Geophys. Res. Lett. 2007, 34, 2007GL031477. [Google Scholar] [CrossRef]
- McConochie, J.D.; Hardy, T.A.; Mason, L.B. Modelling Tropical Cyclone Over−Water Wind and Pressure Fields. Ocean Eng. 2004, 31, 1757–1782. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The Regional Oceanic Modeling System (ROMS): A Split−Explicit, Free−Surface, Topography−Following−Coordinate Oceanic Model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Lorenzo, E.D.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; et al. Ocean Forecasting in Terrain−Following Coordinates: Formulation and Skill Assessment of the Regional Ocean Modeling System. J. Comput. Phys. 2008, 227, 3595–3624. [Google Scholar] [CrossRef]
- Garcia, H.E.; Boyer, T.P.; Baranova, O.K.; Locarnini, R.A.; Mishonov, A.V.; Grodsky, A.; Paver, C.R.; Weathers, K.W.; Smolyar, I.V.; Reagan, J.R.; et al. World Ocean Atlas 2018: Product Documentation. Mishonov, A. Technical Editor. 2019. Available online: https://data.nodc.noaa.gov/woa/WOA18/DOC/woa18documentation.pdf (accessed on 6 June 2024).
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk Parameterization of Air−Sea Fluxes for Tropical Ocean−Global Atmosphere Coupled−Ocean Atmosphere Response Experiment. J. Geophys. Res. Oceans 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Zijlema, M.; Vledder, G.P.; Holthuijsen, L.H. Bottom Friction and Wind Drag for Wave Models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- George, L.M.; Yamada, T. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. 1982, 20, 851. [Google Scholar]
- Kantha, L.H.; Clayson, C.A. On the Effect of Surface Gravity Waves on Mixing in the Oceanic Mixed Layer. Ocean Model. 2004, 6, 101–124. [Google Scholar] [CrossRef]
- Holland, G. A Revised Hurricane Pressure–Wind Model. Mon. Weather Rev. 2008, 136, 3432–3445. [Google Scholar] [CrossRef]
- Holland, G.J.; Belanger, J.I.; Fritz, A. A Revised Model for Radial Profiles of Hurricane Winds. Mon. Weather Rev. 2010, 138, 4393–4401. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Perrie, W.; Zhang, J.A. Tropical Cyclone Winds and Inflow Angle Asymmetry from SAR Imagery. Geophys. Res. Lett. 2021, 48, e2021GL095699. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, C.; Li, X.; Zhu, Z.; Perrie, W. Tropical Cyclone Center and Symmetric Structure Estimating from SMAP Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4205311. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea. Sci. Rep. 2015, 5, 15496. [Google Scholar] [CrossRef] [PubMed]
- Nekkali, Y.S.; Osuri, K.K.; Mohapatra, M. Physical understanding of the tropical cyclone intensity and size relations over the North Indian Ocean. Clim. Dyn. 2024, 1–14. [Google Scholar] [CrossRef]
- Emanuel, K.; DesAutels, C.; Holloway, C.; Korty, R. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, D.L. The impact of the storm–induced SST cooling on hurricane intensity. Adv. Atmos. Sci. 2006, 23, 14–22. [Google Scholar] [CrossRef]
- Samson, G.; Giordani, H.; Caniaux, G.; Roux, F. Numerical Investigation of an Oceanic Resonant Regime Induced by Hurricane Winds. Ocean Dyn. 2009, 59, 565–586. [Google Scholar] [CrossRef]
- Wang, G.; Wu, L.; Johnson, N.C.; Ling, Z. Observed Three−dimensional Structure of Ocean Cooling Induced by Pacific Tropical Cyclones. Geophys. Res. Lett. 2016, 43, 7632–7638. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, W.Z.; Shang, S.P.; Hong, H.S. Ocean Response to Typhoons in the Western North Pacific: Composite Results from Argo Data. Deep Sea Res. Part Oceanogr. Res. Pap. 2017, 123, 62–74. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forristall Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Sun, J.; Oey, L.Y.; Chang, R.; Xu, F.; Huang, S. Ocean Response to Typhoon Nuri (2008) in Western Pacific and South China Sea. Ocean Dyn. 2015, 65, 735–749. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Wu, R.; Chen, D.; Zhang, D.; Shang, X.; Wang, Y.; Song, X.; Jin, W.; Yu, L.; et al. Sea Surface Current Response Patterns to Tropical Cyclones. J. Mar. Syst. 2020, 208, 103345. [Google Scholar] [CrossRef]
# | Experiments | MWS (m/s) | TSP (m/s) | RMW (km) | |
---|---|---|---|---|---|
1 | TS | W1 | 20.3 | 5 | 66 |
W2 | 17.5 | ||||
W3 | 20.0 | ||||
2 | TY | W1 | 36.7 | 5 | 35 |
W2 | 34.0 | ||||
W3 | 36.0 | ||||
3 | STY (T5) | W1 | 73.0 | 5 | 25 |
W2 | 69.0 | ||||
W3 | 72.0 | ||||
4 | T3 | W1 | 72.1 | 3 | 25 |
W2 | 67.5 | ||||
W3 | 72.0 | ||||
5 | T10 | W1 | 75.3 | 10 | 25 |
W2 | 70.8 | ||||
W3 | 75.0 |
Experiments | W2 Winds | W3 Winds | ||||
---|---|---|---|---|---|---|
TS | 0.049 | 0.969 | 0.020 | 0.992 | 0.592 | 0.024 |
TY | 0.120 | 0.972 | 0.039 | 0.994 | 0.675 | 0.023 |
STY | 0.416 | 0.958 | 0.089 | 0.998 | 0.786 | 0.042 |
Experiments | W2 Winds | W3 Winds | ||||
---|---|---|---|---|---|---|
TS | 0.466 | 0.921 | 0.194 | 0.953 | 0.584 | 0.035 |
TY | 0.570 | 0.892 | 0.225 | 0.984 | 0.605 | 0.103 |
STY | 1.183 | 0.832 | 0.347 | 0.994 | 0.707 | 0.195 |
Experiments | W2 Winds | W3 Winds | ||||
---|---|---|---|---|---|---|
T3 | 0.562 | 0.936 | 0.104 | 0.983 | 0.815 | 0.050 |
T5 | 0.416 | 0.958 | 0.089 | 0.998 | 0.786 | 0.042 |
T10 | 0.082 | 0.970 | 0.037 | 0.998 | 0.548 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Zhang, B. Effect of Tropical Cyclone Wind Forcing on Improving Upper Ocean Simulation: An Idealized Study. Remote Sens. 2024, 16, 2574. https://doi.org/10.3390/rs16142574
Yue X, Zhang B. Effect of Tropical Cyclone Wind Forcing on Improving Upper Ocean Simulation: An Idealized Study. Remote Sensing. 2024; 16(14):2574. https://doi.org/10.3390/rs16142574
Chicago/Turabian StyleYue, Xinxin, and Biao Zhang. 2024. "Effect of Tropical Cyclone Wind Forcing on Improving Upper Ocean Simulation: An Idealized Study" Remote Sensing 16, no. 14: 2574. https://doi.org/10.3390/rs16142574
APA StyleYue, X., & Zhang, B. (2024). Effect of Tropical Cyclone Wind Forcing on Improving Upper Ocean Simulation: An Idealized Study. Remote Sensing, 16(14), 2574. https://doi.org/10.3390/rs16142574