Martian Dust Storms: Reviews and Perspective for the Tianwen-3 Mars Sample Return Mission
Abstract
:1. Introduction
2. Martian Dust Storms
2.1. Basic Properties of Dust Storms
2.2. Driving Mechanisms of Dust Storms
2.3. Impacts of Dust Storms
3. Detection Methods for Dust Storms
3.1. Historical Views on Dust Storms
3.2. Orbiter Multicolor Imaging
3.3. Orbiter Infrared Spectroscopy
3.4. Landers/Rovers Monitoring
4. Dust Storm Monitoring and Predicting for Tianwen-3
4.1. Statistical Predictions
- The four zones are located in Utopia Planitia, Isidis Basin, Amazonis Planitia, and Chryse Planitia, respectively. Each zone covers a range of 18° in longitude and 15° in latitude, creating a 3 × 3 grid in the VDOD database;
- The VDOD data in the grid during MY 24–35 (12 MYs) are extracted from the database to form a subset for each region, resulting in 108 samples for each zone (=3 × 3 × 12);
- For each Martian day, the numbers of the six dust activity levels in the 108 samples are counted, and their probabilities are calculated;
- Since Martian dust storms are seasonal, we extend the date to MY 40 and 41 according to the orbit of Mars;
- Finally, the predicted results are presented in Figure 6.
- Before the southern spring equinox (LS < 180°), the dust activity remains weak, generally below the safety line (VDOD < 1.0), occasionally exceeding 1.0 but with very short duration;
- After the southern spring equinox (LS > 180°), there is a significant increase in the probability of VDOD exceeding 1.0. The trend is particularly noticeable between LS of 200°~240° (i.e., 7 October to 11 December, 2029 in MY 40 and 25 August to 29 October, 2031 in MY 41), with the probability of VDOD exceeding 2.0 being greater than 30%. Dust activity generally peaks near LS of 210°~220°, and then begins to weaken and recover. During this period, it is important for operators to closely monitor the changing trend of dust activity;
- After the southern summer solstice (LS > 270°), dust activity experiences a significant weakening but remains at an active level. As shown in Figure 6a, just before LS = 270°, the probabilities for Level 2 and Level 3 are both about 50%. Subsequently, dust activity will recover to quiet conditions and begin another seasonal trend.
4.2. Dust Storm Monitoring for Tianwen-3
- Martian dust storm monitoring and early warning: Conducting large-field multicolor imaging of mid-low latitude dust storm activities on Mars to obtain information such as location, coverage and moving speed of dust storms on Mars.
- Spatial and temporal distribution of atmospheric ozone on Mars: Conducting large-field ultraviolet imaging of the column content of middle- and low-latitude ozone on Mars to obtain its spatial and temporal distributions. This will also improve the accuracy of dust storm identification in combination with water-ice cloud identification in visible light channels.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connerney, J.E.P.; Acuña, M.H.; Wasilewski, P.J.; Ness, N.F.; Rème, H.; Mazelle, C.; Vignes, D.; Lin, R.P.; Mitchell, D.L.; Cloutier, P.A. Magnetic lineations in the ancient crust of Mars. Science 1999, 284, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Jakosky, B.M. Atmospheric loss to space and the history of water on Mars. Ann. Rev. Earth Planet. Sci. 2021, 49, 71–93. [Google Scholar] [CrossRef]
- Chaffin, M.S.; Kass, D.M.; Aoki, S.; Fedorova, A.A.; Deighan, J.; Connour, K.; Heavens, N.G.; Kleinböhl, A.; Jain, S.K.; Chaufray, J.-Y.; et al. Martian water loss to space enhanced by regional dust storms. Nat. Astronom. 2021, 5, 1036–1042. [Google Scholar] [CrossRef]
- Dubinin, E.; Fraenz, M.; Pätzold, M.; McFadden, J.; Halekas, J.S.; DiBraccio, G.A.; Connerney, J.E.P.; Eparvier, F.; Brain, D.; Jakosky, B.M.; et al. The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res. Space Phys. 2017, 122, 11285–11301. [Google Scholar] [CrossRef]
- Heavens, N.G.; Kleinböhl, A.; Chaffin, M.S.; Halekas, J.S.; Kass, D.M.; Hayne, P.O.; McCleese, D.J.; Piqueux, S.; Shirley, J.H.; Schofield, J.T. Hydrogen escape from Mars enhanced by deep convection in dust storms. Nat. Astronom. 2018, 2, 126–132. [Google Scholar] [CrossRef]
- Lillis, R.J.; Brain, D.A.; Bougher, S.W.; Leblanc, F.; Luhmann, J.G.; Jakosky, B.M.; Modolo, R.; Fox, J.; Deighan, J.; Fang, X.; et al. Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 2015, 195, 357–422. [Google Scholar] [CrossRef]
- Lundin, R.; Barabash, S.; Andersson, H.; Holmström, M.; Grigoriev, A.; Yamauchi, M.; Sauvaud, J.-A.; Fedorov, A.; Dudnik, E.; Thocaven, J.J.; et al. Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express. Science 2004, 305, 1933–1936. [Google Scholar] [CrossRef]
- Ramstad, R.; Barabash, S.; Futaana, Y.; Nilsson, H.; Wang, X.-D.; Holmström, M. The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. J. Geophys. Res. Planets 2015, 120, 1298–1309. [Google Scholar] [CrossRef]
- Wei, Y.; Fraenz, M.; Dubinin, E.; Woch, J.; Lühr, H.; Wan, W.; Zong, Q.-G.; Zhang, T.L.; Pu, Z.Y.; Fu, S.Y.; et al. Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region. J. Geophys. Res. 2012, 117, A03208. [Google Scholar] [CrossRef]
- Barlow, N. Mars: An Introduction to Its Interior, Surface and Atmosphere; Cambridge University Press: New York, NY, USA, 2008; pp. 163–186. [Google Scholar]
- Leovy, C. Weather and climate on Mars. Nature 2001, 412, 245–249. [Google Scholar] [CrossRef]
- Shirley, J.H. Solar system dynamics and global-scale dust storms on Mars. Icarus 2015, 251, 128–144. [Google Scholar] [CrossRef]
- Keiffer, H.H.; Jakosky, B.M.; Snyder, C.W.; Matthews, M.S. Mars; Univ. Ariz. Press: Tucson, AZ, USA, 1992. [Google Scholar]
- Haberle, R.M.; Clancy, R.T.; Forget, F.; Smith, M.D.; Zurek, R.W. The Atmosphere and Climate of Mars; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Encrenaz, T. The atmosphere of Mars as constrained by remote sensing. Space Sci. Rev. 2001, 96, 411–424. [Google Scholar] [CrossRef]
- Smith, M.D. Spacecraft observations of Martian atmosphere. Ann. Rev. Earth Planet. Sci. 2008, 36, 191–219. [Google Scholar] [CrossRef]
- Schmidt, F.; Way, M.J.; Costard, F.; Bouley, S.; Séjourné, A.; Aleinov, I. Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl. Acad. Sci. USA 2022, 119, e2112930118. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; He, F.; Fan, K.; Rong, Z.; Wang, Y. Preliminary predictions of the dust storm activity at the landing site of China’s Zhurong Mars rover in 2022. Chin. Sci. Bull. 2022, 67, 1938–1944. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Fan, K.; He, F.; Rong, Z.; Zhou, X.; Tan, N. The impact of dust storms on Mars surface rovers: Review and prospect. Chin. Sci. Bull. 2023, 68, 368–379. (In Chinese) [Google Scholar] [CrossRef]
- Rong, Z.; Wei, Y.; He, F.; Gao, J.; Fan, K.; Wang, Y.; Cao, L.; Yan, L.; Ren, Z.; Zhou, X.; et al. The orbit schemes to monitor Martian dust storms: Benefits to China’s future mars missions. Chin. Sci. Bull. 2023, 68, 716–728. (In Chinese) [Google Scholar] [CrossRef]
- James, P.B. Martian local dust storms. In Recent Advances in Planetary Meteorology; Hunt, G., Ed.; Cambridge University Press: New York, NY, USA, 1985; pp. 85–100. [Google Scholar]
- Martin, L.J.; Zurek, R.W. An analysis of the history of dust activity on Mars. J. Geophys. Res. 1993, 98, 3221–3246. [Google Scholar] [CrossRef]
- Zurek, R.W.; Martin, L.J. Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 1993, 98, 3247–3259. [Google Scholar] [CrossRef]
- Fernández, W. Martian dust storms: A review. Earth Moon Planet. 1997, 77, 19–46. [Google Scholar] [CrossRef]
- Kahre, M.A.; Murphy, J.R.; Newman, C.E.; Wilson, R.J.; Cantor, B.A.; Lemmon, M.T.; Wolff, M.J. The Mars Dust Cycle. In The Atmosphere and Climate of Mars; Haberle, R.M., Clancy, R.T., Forget, F., Smith, M.D., Zurek, R.W., Eds.; Cambridge University Press: New York, NY, USA, 2007; pp. 295–337. [Google Scholar]
- Malin, M.C.; Cantor, B.A. MRO MARCI Weather Report for the week of 27 December 2021–2 January 2022. Malin Space Science Systems Captioned Image Release, 2022, MSSS-603. Available online: https://www.msss.com/msss_images/2022/01/05/ (accessed on 9 March 2024).
- Malin, M.C.; Cantor, B.A.; Britton, A.W. MRO MARCI Weather Report for the week of 4 June 2018–10 June 2018, Malin Space Science Systems Captioned Image Release, 2018, MSSS-534. Available online: https://www.msss.com/msss_images/2018/06/13/ (accessed on 9 March 2024).
- Cantor, B.A.; James, P.B.; Caplinger, M.; Wolff, M.J. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 2001, 106, 23653–23688. [Google Scholar] [CrossRef]
- Wang, H.; Richardson, M.I. The origin, evolution, and trajectory of large dust storms on Mars during Mars Year 24–30 (1999–2011). Icarus 2015, 251, 112–127. [Google Scholar] [CrossRef]
- Kulowski, L.; Wang, H.; Toigo, A.D. The seasonal and spatial distribution of textured dust storms observed by Mars Global Surveyor Mars Orbiter Camera. Adv. Space Res. 2017, 59, 715–721. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Fedorova, A.A.; Kahre, M.A.; Toigo, A.D. Studies of the 2018/Mars Year 34 planet-encircling dust storm. J. Geophys. Res. Planets 2020, 125, e2020JE006700. [Google Scholar] [CrossRef]
- Wang, H.; Saidel, M.; Richardson, M.I.; Toigo, A.D.; Battalio, J.M. Martian dust storm distribution and annual cycle from Mars daily global map observations. Icarus 2023, 394, 115416. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Hernández-Bernal, J.; Delcroix, M. The onset and growth of the 2018 Martian Global Dust Storm. Geophys. Res. Lett. 2019, 46, 6101–6108. [Google Scholar] [CrossRef]
- Kass, D.M.; Kleinböhl, A.; McCleese, D.J.; Schofield, J.T.; Smith, M.D. Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett. 2016, 43, 6111–6118. [Google Scholar] [CrossRef]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.J.; Lewis, S.R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M.T.; Smith, M.D.; et al. Eight-year climatology of dust optical depth on Mars. Icarus 2015, 251, 65–95. [Google Scholar] [CrossRef]
- Montabone, L.; Spiga, A.; Kass, D.M.; Kleinböhl, A.; Forget, F.; Millour, E. Martian year 34 column dust climatology from Mars Climate Sounder observations: Reconstructed maps and model simulations. J. Geophys. Res. Planets 2020, 125, e2019JE006111. [Google Scholar] [CrossRef]
- Lemmon, M.T.; Guzewich, S.D.; McConnochie, T.; de Vicente-Retortillo, A.; Martínez, G.; Smith, M.D.; Bell, J.F., III; Wellington, D.; Jacob, S. Large dust aerosol sizes seen during the 2018 Martian global dust event by the Curiosity rover. Geophys. Res. Lett. 2019, 46, 9448–9456. [Google Scholar] [CrossRef]
- Chen-Chen, H.; Pérez-Hoyos, S.; Sánchez-Lavega, A. Dust particle size, shape and optical depth during the 2018/MY34 Martian global dust storm retrieved by MSL Curiosity rover Navigation Cameras. Icarus 2021, 354, 114021. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Christensen, P.R. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. 2003, 108, 5098. [Google Scholar] [CrossRef]
- Wolff, M.J.; Clancy, R.T. Constraints on the size of Martian aerosols from thermal emission spectrometer observations. J. Geophys. Res. 2003, 108, 5097. [Google Scholar] [CrossRef]
- Vicente-Retortillo, Á.; Martínez, G.; Rennó, N.; Lemmon, M.T.; de la Torre Juarez, M. Determination of dust aerosol particle size at Gale crater using REMS UVS and Mastcam measurements. Geophys. Res. Lett. 2017, 44, 3502–3508. [Google Scholar] [CrossRef]
- Fedorova, A.A.; Montmessin, F.; Rodin, A.V.; Korablev, O.I.; Maattanen, A.; Maltagliati, L.; Bertaux, J.-L. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 2014, 231, 239–260. [Google Scholar] [CrossRef]
- Bertaux, J.-L.; Korablev, O.; Perrier, S.; Quémerais, E.; Montmessin, F.; Leblanc, F.; Lebonnois, S.; Rannou, P.; Lefèvre, F.; Forget, F.; et al. SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. J. Geophys. Res. 2006, 111, E10S90. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Tiogo, A.D.; Richardson, M.I.; Newman, C.E.; Talaat, E.R.; Waugh, D.W.; McConnochie, T.H. The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation. J. Geophys. Res. Planet. 2013, 118, 980–993. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Yiğit, E.; Kuroda, T.; Hartogh, P. General circulation modeling of the Martian upper atmosphere during global dust storms. J. Geophys. Res. Planet. 2013, 118, 2234–2246. [Google Scholar] [CrossRef]
- Wang, Y.; Chow, K.-C.; Xiao, J.; Wang, C.-F. Effect of dust particle size on the climate of Mars. Planet. Space Sci. 2021, 208, 105346. [Google Scholar] [CrossRef]
- Hanel, R.; Conrath, B.; Hovis, W.; Kunde, V.; Lowman, P.; Maguire, W.; Pearl, J.; Pirraglia, J.; Prabhakara, C.; Schlachman, B.; et al. Investigation of the Martian environment by infrared spectroscopy on Mariner 9. Icarus 1972, 17, 423–442. [Google Scholar] [CrossRef]
- Leovy, C.B.; Zurek, R.W.; Pollack, J.B. Mechanisms for Mars dust storms. J. Atmos. Sci. 1973, 30, 749–762. [Google Scholar] [CrossRef]
- Gierasch, P.J.; Goody, R.M. A model of a Martian great dust storm. J. Atmos. Sci. 1973, 30, 169–179. [Google Scholar] [CrossRef]
- Leovy, C.B.; Briggs, G.A.; Young, A.T.; Smith, B.A.; Pollack, J.B.; Shipley, E.N.; Wildey, R.L. The Martian atmosphere: Mariner 9 television experiment progress report. Icarus 1972, 17, 373–393. [Google Scholar] [CrossRef]
- Cross, C.A. The heat balance of the Martian polar caps. Icarus 1971, 15, 110–114. [Google Scholar] [CrossRef]
- Ryan, J.A.; Sharman, R.D.; Lucich, R.D. Local Mars dust storm generation mechanism. Geophys. Res. Lett. 1981, 8, 899–901. [Google Scholar] [CrossRef]
- Ryan, J.A.; Lucich, R.D. Possible dust devils, vortices on Mars. J. Geophys. Res. 1983, 88, 11005–11011. [Google Scholar] [CrossRef]
- Hess, S.L. Martian winds and dust clouds. Planet. Space Sci. 1973, 21, 1549–1557. [Google Scholar] [CrossRef]
- Newman, C.E.; Lewis, S.R.; Read, S.R.; Forget, F. Modeling the Martian dust cycle, 1, Representations of dust transport processes. J. Geophys. Res. 2002, 107, 5123. [Google Scholar] [CrossRef]
- Newman, C.E.; Lewis, S.R.; Read, S.R.; Forget, F. Modeling the Martian dust cycle, 2, Multiannual radiatively active dust transport simulations. J. Geophys. Res. 2002, 107, 5124. [Google Scholar] [CrossRef]
- Basu, S.; Wilson, J.; Richardson, M.; Ingersoll, A. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res. 2006, 111, E09004. [Google Scholar] [CrossRef]
- Kahre, M.A.; Murphy, J.R.; Haberle, R.M. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 2006, 11, E06008. [Google Scholar] [CrossRef]
- Xiao, J.; Chow, K.C.; Chan, K. Dynamical processes of dust lifting in the northern mid-latitude region of Mars during the dust storm season. Icarus 2019, 317, 94–103. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.P. Improved general circulation model for the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Petrosyan, A.; Galperin, B.; Larsen, S.E.; Lewis, S.R.; Määttänen, A.; Read, P.L.; Renno, N.; Rogberg, L.P.H.T.; Savijärvi, H.; Siili, T.; et al. The Martian atmospheric boundary layer. Rev. Geophys. 2011, 49, RG3005. [Google Scholar] [CrossRef]
- Shirley, J.H.; Mischna, M.A. Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on Mars. Planet. Space Sci. 2017, 139, 37–50. [Google Scholar] [CrossRef]
- Mischna, M.A.; Shirley, J.H. Numerical modeling of orbit-spin coupling accelerations in a Mars general circulation model: Implications for global dust storm activity. Planet. Space Sci. 2017, 141, 45–72. [Google Scholar] [CrossRef]
- Newman, C.E.; Lee, C.; Mischna, M.A.; Richardson, M.I.; Shirley, J.H. An initial assessment of the impact of postulated orbit-spin coupling on Mars dust storm variability in fully interactive dust simulations. Icarus 2019, 317, 649–668. [Google Scholar] [CrossRef]
- Shirley, J.H.; McKim, R.J.; Battalio, J.M.; Kass, D.M. Orbit-Spin Coupling and the Triggering of the Martian Planet-Encircling Dust Storm of 2018. J. Geophys. Res. Planets 2020, 125, e2019JE006077. [Google Scholar] [CrossRef]
- Bertrand, T.; Wilson, R.J.; Kahre, M.A.; Urata, R.; Kling, A. Simulation of the 2018 global dust storm on Mars using the NASA Ames Mars GCM: A multitracer approach. J. Geophys. Res. Planets 2020, 125, e2019JE006122. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Heavens, N.G.; Newman, C.E.; Richardson, M.I.; Yang, C.; Li, J.; Cui, J. Earth-like thermal and dynamical coupling processes in the Martian climate system. Earth Sci. Rev. 2022, 229, 104023. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, Y.; Wu, Z.; Ren, Z.; Tan, N.; Fan, S.; He, F.; Rong, Z.; Yan, L.; Wang, Y.; et al. Martian whole atmosphere model and dust activities: Review and prospect. Chin. Sci. Bull. 2024, 69, 1058–1067. (In Chinese) [Google Scholar] [CrossRef]
- Fenton, L.K.; Geissler, P.E.; Haberle, R.M. Global warming and climate forcing by recent albedo changes on Mars. Nature 2007, 446, 646–649. [Google Scholar] [CrossRef]
- Kass, D.M.; Schofield, J.T.; Kleinböhl, A.; McCleese, D.J.; Heavens, N.G.; Shirley, J.H.; Steele, L.J. Mars Climate Sounder observation of Mars’ 2018 global dust storm. Geophys. Res. Lett. 2020, 47, e2019GL083931. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Lemmon, M.; Smith, C.L.; Martínez, G.; de Vicente-Retortillo, Á.; Newman, C.E.; Baker, M.; Campbell, C.; Cooper, B.; Gómez-Elvira, J.; et al. Mars Science Laboratory observations of the 2018/Mars year 34 global dust storm. Geophys. Res. Lett. 2019, 46, 71–79. [Google Scholar] [CrossRef]
- Haberle, R.M.; Pollack, J.B.; Barnes, J.R.; Zurek, R.W.; Leovy, C.B.; Murphy, J.R.; Lee, H.; Schaeffer, J. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation. J. Geophys. Res. 1993, 98, 3093–3123. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Zhang, X.; Li, J.; Cui, J. Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms. Nat. Commun. 2020, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhong, L.; Yuan, R.; Zhao, C.; Li, R.; Wang, Y.; Lian, Y.; Richardson, M. Simulation of Martian dust effects on polar CO2 ice caps and atmospheric circulation using the MarsWRF model. J. Geophys. Res. Planet. 2021, 126, e2021JE006937. [Google Scholar] [CrossRef]
- Melnik, O.; Parrot, M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. 1998, 103, 29107–29117. [Google Scholar] [CrossRef]
- Farrell, W.M.; Kaiser, M.L.; Desch, M.D.; Houser, J.G.; Cummer, S.A.; Wilt, D.M.; Landis, G.A. Detecting electrical activity from Martian dust storms. J. Geophys. Res. 1999, 104, 3795–3801. [Google Scholar] [CrossRef]
- Krauss, C.E.; Horanyi, M.; Robertson, S. Experimental evidence for electrostatic discharging of dust near the surface of Mars. New J. Phys. 2003, 5, 70. [Google Scholar] [CrossRef]
- Merrison, J.; Jensen, J.; Kinch, K.; Mugford, R.; Nørnberg, P. The electrical properties of Mars analogue dust. Planet Space Sci. 2004, 52, 279–290. [Google Scholar] [CrossRef]
- Michael, M.; Tripathi, S.N. Effect of charging of aerosols in the lower atmosphere of Mars during the dust storm of 2001. Planet Space Sci. 2008, 56, 1696–1702. [Google Scholar] [CrossRef]
- Haider, S.A.; Sheel, V.; Smith, M.D.; Maguire, W.C.; Molina-Cuberos, G.J. Effect of dust storms on the D region of the Martian ionosphere: Atmospheric electricity. J. Geophys. Res. Space Phys. 2010, 115, A12336. [Google Scholar] [CrossRef]
- McDunn, T.L.; Bougher, S.W.; Murphy, J.; Smith, M.D.; Forget, F.; Bertaux, J.-L.; Montmessin, F. Simulating the density and thermal structure of the middle atmosphere (80–130 km) of Mars using the MGCM–MTGCM: A comparison with MEX/SPICAM observations. Icarus 2010, 206, 5–17. [Google Scholar] [CrossRef]
- Chaufray, J.Y.; Chaffin, M.S.; Deighan, J.; Jain, S.; Schneider, N.; Mayyasi, M.; Jakosky, B. Effect of the 2018 Martian global dust storm on the CO2 density in the lower nightside thermosphere observed from MAVEN/IUVS Lyman-alpha absorption. Geophys. Res. Lett. 2020, 47, e2019GL082889. [Google Scholar] [CrossRef]
- Fang, X.; Ma, Y.; Lee, Y.; Bougher, S.; Liu, G.; Benna, M.; Mahaffy, P.; Montabone, L.; Pawlowski, D.; Dong, C.; et al. Mars dust storm effects in the ionosphere and magnetosphere and implications for atmospheric carbon loss. J. Geophys. Res. Space Phys. 2020, 125, e2019JA026838. [Google Scholar] [CrossRef]
- Niu, D.D.; Cui, J.; Wu, S.Q.; Gu, H.; Cao, Y.-T.; Wu, Z.-P.; Wu, X.-S.; Zhong, J.-H.; Wu, M.-Y.; Wei, Y.; et al. Species-dependent response of the Martian ionosphere to the 2018 global dust event. J. Geophys. Res. Planets 2021, 126, e2020JE006679. [Google Scholar] [CrossRef]
- Mukundan, V.; Thampi, S.V.; Bhardwaj, A.; Fang, X. Impact of the 2018 Mars global dust storm on the ionospheric peak: A study using a photochemical model. J. Geophys. Res. Planets 2021, 126, e2021JE006823. [Google Scholar] [CrossRef]
- Stone, S.W.; Yelle, R.V.; Benna, M.; Lo, D.Y.; Elrod, M.K.; Mahaffy, P.R. Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science 2020, 370, 824–831. [Google Scholar] [CrossRef]
- Clancy, R.T.; Nair, H. Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere. J. Geophys. Res. Planets 1996, 101, 12785–12790. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Lefèvre, F.; Cantor, B.A.; Malin, M.C.; Smith, M.D. Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus 2016, 266, 112–133. [Google Scholar] [CrossRef]
- Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K.E. Reading the climate record of the Martian polar layered deposits. Icarus 2012, 221, 405–419. [Google Scholar] [CrossRef]
- Colaprete, A.; Barnes, J.; Haberle, R.; Hollingsworth, J.L.; Kieffer, H.H.; Titus, T.N. Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics. Nature 2005, 435, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Golombek, M.P.; Warner, N.H.; Ganti, V.; Lamb, M.P.; Parker, T.J.; Fergason, R.L.; Sullivan, R. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planets 2014, 119, 2522–2547. [Google Scholar] [CrossRef]
- Farley, K.A.; Malespin, C.; Mahaffy, P.; Grotzinger, J.P.; Vasconcelos, P.M.; Milliken, R.E.; Malin, M.; Edgett, K.S.; Pavlov, A.A.; Hurowitz, J.A.; et al. In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science 2013, 343, 1247166. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, A.R.; Chen, A.; Barnes, J.R.; Burkhart, P.D.; Cantor, B.A.; Dwyer-Cianciolo, A.M.; Fergason, R.L.; Hinson, D.P.; Justh, H.L.; Kass, D.M.; et al. Assessment of environments for mars science laboratory entry, descent, and surface operations. Space Sci. Rev. 2012, 170, 793–835. [Google Scholar] [CrossRef]
- Team, R. Characterization of the Martian Surface Deposits by the Mars Pathfinder Rover, Sojourner. Science 1997, 278, 1765–1767. [Google Scholar] [CrossRef]
- Rieder, R.T.; Economou, T.E.; Wänke, H.; Turkevich, A.; Crisp, J.; Brückner, J.; Dreibus, G.; McSween, H.Y., Jr. The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode. Science 1998, 278, 1771–1774. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Martínez, G.M.; Spiga, A.; Vicente-Retortillo, A.; Newman, C.E.; Murdoch, N.; Forget, F.; Millour, E.; Pierron, T. Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planet. Space Sci. 2021, 207, 105337. [Google Scholar] [CrossRef]
- Landis, G.A.; Jenkins, P.P. Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 2000, 105, 1855–1857. [Google Scholar] [CrossRef]
- Crisp, D.; Pathare, A.; Ewell, R.C. The performance of gallium arsenide/germanium solar cells at the Martian surface. Acta Astronaut. 2004, 54, 83–101. [Google Scholar] [CrossRef]
- Staab, M.S.; Herman, J.A.; Reich, K.; Reich, K.; Sridhar, V.; Nelson, R.W. MER Opportunity dust-storm recovery operations and implications for future Mars surface missions. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar]
- Yen, A.; Gellert, R.; Schröder, C.; Morris, R.V.; Bell, J.F., III; Knudson, A.T.; Clark, B.C.; Ming, D.M.; Crisp, J.A.; Arvidson, R.E.; et al. An integrated view of the chemistry and mineralogy of Martian soils. Nature 2005, 436, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Slipher, E.C. Mars—The Photographic Story; Northland Press: Flagstaff, AZ, USA, 1962. [Google Scholar]
- Horn, D.; McAfee, J.M.; Winer, A.M.; Herr, K.C.; Pimentel, G.C. The composition of the Martian atmosphere: Minor constituents. Icarus 1972, 16, 543–556. [Google Scholar] [CrossRef]
- Cimino, G.; Clavin, W.M. Calibration and analysis of Mariner 7 infrared spectra. Bull. Am. Astron. Soc. 1996, 28, 1068. [Google Scholar]
- Hord, C.W.; Barth, C.A.; Stewart, A.I.; Lane, A.L. Mariner 9 ultraviolet spectrometer experiment: Photometry and topography of Mars. Icarus 1972, 17, 433–456. [Google Scholar] [CrossRef]
- Anderson, E.; Loevy, C. Mariner 9 television limb observations of dust and ice hazes on Mars. J. Atmos. Sci. 1978, 35, 723. [Google Scholar] [CrossRef]
- Martin, T.Z.; Richardson, M.I. New dust opacity mapping from Viking infrared thermal mapper data. J. Geophys. Res. 1993, 98, 10941–10949. [Google Scholar] [CrossRef]
- Biggs, G.A.; Baum, W.A.; Barnes, J. Viking Orbiter imaging observations of dust in the martian atmosphere. J. Geophys. Res. 1979, 84, 2795. [Google Scholar] [CrossRef]
- Malin, M.C.; Danielson, G.E.; Ravine, M.A.; Soulanille, T.A. Design and development of the Mars Observer Camera. Int. J. Imaging Syst. Technol. 1991, 3, 76–91. [Google Scholar] [CrossRef]
- Malin, M.C.; Danielson, G.E.; Ingersoll, A.P.; Masursky, H.; Veverka, J.; Ravine, M.A.; Soulanille, T.A. Mars Observer Camera. J. Geophys. Res. 1992, 97, 7699–7718. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 2001, 106, 23823–23871. [Google Scholar] [CrossRef]
- Tomasko, M.G.; Doose, L.R.; Lemmon, M.; Smith, P.H.; Wegryn, E. Properties of dust in Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. 1999, 104, 8987–9007. [Google Scholar] [CrossRef]
- Smith, P.H.; Lemmon, M. Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. 1999, 104, 8975–8985. [Google Scholar] [CrossRef]
- Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; McSween, H.Y., Jr.; Nealson, K.; Mehall, G.L.; Silverman, S.H.; Ferry, S.; Caplinger, M.; et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 2004, 110, 85–130. [Google Scholar] [CrossRef]
- Määttänen, A.; Listowski, C.; Montmessin, F.; Maltagliati, L.; Reberac, A.; Joly, L.; Bertaux, L.J. A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 2013, 223, 892–941. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Soufflot, A.; Berthé, M.; Langevin, Y.; Gondet, B.; Drossart, P.; Bouyé, M.; Combes, M.; Puget, P.; Semery, A.; et al. OMEGA: Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activité. Eur. Space Agency Spec. Pub. 2004, 1240, 37. [Google Scholar]
- Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; et al. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci. 2016, 126, 93–138. [Google Scholar] [CrossRef]
- Lemmon, M.T.; Wolff, M.J.; Bell, J.F., III; Smith, M.D.; Cantor, B.A.; Smith, P.H. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 2015, 251, 96–111. [Google Scholar] [CrossRef]
- Bell, J.F., III; Squyres, S.W.; Herkenhoff, K.E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; et al. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. Planets 2003, 108, 8063. [Google Scholar] [CrossRef]
- Chistensen, P.R.; Mehall, G.L.; Silverman, S.H.; Anwar, S.; Cannon, G.; Gorelick, N.; Kheen, R.; Tourville, T.; Bates, D.; Ferry, S.; et al. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. J. Geophys. Res. Planets 2003, 108, 8064. [Google Scholar]
- Bell, J.F., III; Wolff, M.J.; Malin, M.C.; Calvin, W.M.; Cantor, B.A.; Caplinger, M.A.; Clancy, R.T.; Edgett, K.S.; Edwards, L.J.; Fahle, J.; et al. Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res. Planets 2009, 114, E08S92. [Google Scholar] [CrossRef]
- Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. Planets 2007, 112, E05S03. [Google Scholar] [CrossRef]
- McCleese, D.J.; Schofield, J.T.; Taylor, F.W.; Calcutt, S.B.; Foote, M.C.; Kass, D.M.; Leovy, C.B.; Paige, D.A.; Read, P.L.; Zurek, R.W. Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res. Planets 2007, 112, E05S06. [Google Scholar] [CrossRef]
- Smith, P.H.; Tamppari, L.; Arvidson, R.E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; et al. Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science. J. Geophys. Res. Planets 2008, 113, E00A18. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Crisp, J.; Vasavada, A.R.; Anderson, R.C.; Baker, C.J.; Barry, R.; Blake, D.F.; Conrad, P.; Edgett, K.S.; Ferdowski, B.; et al. Mars Science Laboratory mission and science investigation. Space Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Neefs, E.; Drummond, R.; Thomas, I.R.; Daerden, F.; Lopez-Moreno, J.-J.; Rodriguez, J.; Patel, M.R.; Bellucci, G.; Allen, M.; et al. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 2015, 119, 233–249. [Google Scholar] [CrossRef]
- Thomas, N.; Cremonese, G.; Ziethe, R.; Gerber, M.; Brändli, M.; Bruno, G.; Erismann, M.; Gambicorti, L.; Gerber, T.; Ghose, K.; et al. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 2017, 212, 1897–1944. [Google Scholar] [CrossRef]
- Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A.A.; Shakun, A.V.; Grigoriev, A.V.; Moshkin, B.E.; Ignatiev, N.I.; Forget, F.; Lefèvre, F.; et al. The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev. 2018, 214, 7. [Google Scholar] [CrossRef]
- Maki, J.N.; Golombek, M.; Deen, R.; Abarca, H.; Sorice, C.; Goodsall, T.; Schwochert, M.; Lemmon, M.; Trebi-Ollennu, A.; Banerdt, W.B. The Color Cameras on the InSight Lander. Space Sci. Rev. 2018, 214, 105. [Google Scholar] [CrossRef]
- Banfield, D.; Rodriguez-Manfredi, J.A.; Russell, C.T.; Rowe, K.M.; Leneman, D.; Lai, H.R.; Cruce, P.R.; Means, J.D.; Johnson, C.L.; Mittelholz, A.; et al. Insight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev. 2019, 215, 4. [Google Scholar] [CrossRef]
- Bell, J.F., III; Maki, J.N.; Mehall, G.L.; Ravine, M.A.; Caplinger, M.A.; Bailey, Z.J.; Brylow, S.; Schaffner, J.A.; Kinch, K.M.; Madsen, M.B.; et al. The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Sci. Rev. 2021, 217, 24. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- Rodriguez-Manfredi, J.A.; de la Torre Juárez, M.; Alonso, A.; Apéstigue, V.; Arruego, I.; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M.A.; Castañer, L.; et al. The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Sci. Rev. 2021, 217, 48. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.R.; Wolff, M.; Alshamsi, M.; Osterloo, M.; Bay, P.; Brennan, N.; Bryant, K.; Castleman, Z.; Curtin, A.; DeVito, E.; et al. The Emirates Exploration Imager (EXI) Instrument on the Emirates Mars Mission (EMM) Hope Mission. Space Sci. Rev. 2021, 217, 81. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, D.; Wang, X.; Li, W.; Yang, X.; Yan, D.; Li, Y.; Cao, Z.; Ji, Q.; Sun, T.; et al. High Resolution Imaging Camera (HiRiC) on China’s first Mars exploration Tianwen-1 mission. Space Sci. Rev. 2021, 217, 42. [Google Scholar] [CrossRef]
- Yu, G.B.; Liu, E.H.; Liu, G.L.; Zhou, L.; Zeng, J.Z.; Chen, Y.P.; Zhou, X.D.; Zhao, R.J.; Zhu, S.Y. Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1. Earth Planet. Phys. 2020, 4, 364–370. [Google Scholar] [CrossRef]
- Yang, J.-F.; Liu, D.-W.; Xue, B.; Lyu, J.; Liu, J.-J.; Li, F.; Ren, X.; Ge, W.; Liu, B.; Ma, X.-L.; et al. Design and ground verification for Multispectral Camera on the Mars Tianwen-1 Rover. Space Sci. Rev. 2022, 218, 19. [Google Scholar] [CrossRef]
- Li, B.; Yue, Z.; Qu, S.; Yao, P.; Fu, X.; Ling, Z.; Chen, S. Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28. Universe 2021, 7, 433. [Google Scholar] [CrossRef]
- Guha, B.K.; Gebhardt, C.; Young, R.M.B.; Wolff, M.J.; Montabone, L. Seasonal and diurnal variations of dust storms in Martian year 36 based on the EMM-EXI database. J. Geophys. Res. Planets 2024, 129, e2023JE008156. [Google Scholar] [CrossRef]
- Wang, H.; Ingersoll, A.P. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. J. Geophys. Res. 2002, 107, 5078. [Google Scholar] [CrossRef]
- Battalio, M.; Wang, H. The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences. Icarus 2021, 354, 114059. [Google Scholar] [CrossRef]
- Wu, B.; Dong, J.; Wang, Y.; Rao, W.; Sun, Z.Z.; Li, Z.; Tan, Z.; Chen, Z.; Wang, C.; Liu, W.C.; et al. Landing Site Selection and Characterization of Tianwen-1 (Zhurong Rover) on Mars. J. Geophys. Res. Planets 2022, 127, e2021JE007137. [Google Scholar] [CrossRef]
- Shirley, J.H.; McConnochie, T.H.; Kass, D.M.; Kleinböhl, A.; Schofield, J.T.; Heavens, N.G.; McCleese, D.J.; Benson, J.; Hinson, D.P.; Bandfield, J.L. Temperature and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES. Icarus 2015, 251, 26–49. [Google Scholar] [CrossRef]
- Laseigneur, Y.; Vincendon, M. OMEGA/Mars Express: A new Martian atmospheric dust hunter. Icarus 2023, 392, 115366. [Google Scholar] [CrossRef]
- Smith, M.D.; Pearl, J.C.; Conrath, B.J.; Christensen, P.R. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 2000, 105, 9539–9552. [Google Scholar] [CrossRef]
- Smith, M.D.; Bandfield, J.L.; Christensen, P.R.; Richardson, M.I. Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth. J. Geophys. Res. 2003, 108, 5115. [Google Scholar] [CrossRef]
- Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus 2004, 167, 148–165. [Google Scholar] [CrossRef]
- Kleinböhl, A.; Schofield, J.T.; Kass, D.M.; Abdou, W.A.; Backus, C.R.; Sen, B.; Shirley, J.H.; Lawson, W.G.; Richardson, M.I.; Taylor, F.W.; et al. Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure and dust and water ice opacity. J. Geophys. Res. 2009, 114, E10006. [Google Scholar] [CrossRef]
- Millour, E.; Forget, F.; Spiga, A.; Navarro, T.; Madeleine, J.B.; Montabone, L.; Pottier, A.; Lefevre, F.; Montmessin, F.; Chaufray, J.-Y.; et al. The Mars Climate Database (MCD version 5.2). In Proceedings of the European Planetary Science Congress 2015, Nantes, France, 27 September 2015. [Google Scholar]
- Kleinböhl, A.; Spiga, A.; Kass, D.M.; Shirley, J.H.; Millour, E.; Montabone, L.; Forget, F. Diurnal variations of dust during the 2018 global dust storm observed by the Mars Climate Sounder. J. Geophys. Res. Planets 2020, 125, e2019JE006115. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Korablev, O.; Daerden, F.; Aoki, S.; Thomas, I.R.; Altieri, F.; López-Valverde, M.; Villanueva, G.; Liuzzi, G.; Smith, M.D.; et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 2019, 568, 521–525. [Google Scholar] [CrossRef]
- Information Office of the State Council of the People’s Republic of China. China’s Spaceflight in 2021; People’s Publishing House: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Kleinböhl, A.; Schofield, J.T.; Abdou, W.A.; Irwin, P.G.J.; de Kok, R.J. A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transfer. 2011, 112, 1568–1580. [Google Scholar] [CrossRef]
- He, F.; Wei, Y.; Rong, Z.; Reng, Z.; Yan, L.; Tan, N.; Wang, Y.; Fan, K.; Zhou, X.; Gao, J. Monitoring methods for Martian dust storms. Chin. Sci. Bull. 2023, 68, 2046–2057. (In Chinese) [Google Scholar] [CrossRef]
- Montabone, L.; Forget, F. On forecasting dust storms on Mars. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Fan, K.; Wei, Y. Prospection of multi-spacecraft planetary exploration missions in upcoming future. Chin. Sci. Bull. 2021, 66, 4350–4353. (In Chinese) [Google Scholar] [CrossRef]
Mission | Type | Instruments | Years | References |
---|---|---|---|---|
Mariner 6 | Flyby | IR Spectrometer (IRS) | 1969 | [102,103] |
Mariner 7 | Flyby | IR Spectrometer (IRS) | 1969 | [103] |
Mariner 9 | Orbiter | IR Spectrometer (IRS) UV Spectrometer (UVS) Television (TV) | 1971~1972 | [47,104,105] |
Viking 1 | Orbiter Lander | IR Thermal Mapper (IRTM) Visual Imaging Subsystem (VIS) Cameras | 1976~1980 1976~1982 | [106,107] |
Viking 2 | Orbiter Lander | IR Thermal Mapper (IRTM) Visual Imaging Subsystem (VIS) Cameras | 1976~1978 1976~1980 | [106,107] |
Mars Global Surveyor (MGS) | Orbiter | Thermal Emission Spectrometer (TES) Mars Orbit Camera (MOC) | 1997~2006 | [108,109,110] |
Mars Pathfinder | Lander Rover | Imager for Mars Pathfinder (IMP) Atmospheric Structure Instrument Navigation Camera (ASINC) Alpha Proton X-Ray Spectrometer (APXS) | 1997 1997 | [95,111,112] |
Mars Odyssey | Orbiter | Thermal Emission Imaging System (THEMIS) | 2004~present | [113] |
Mars Express | Orbiter | Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activité (OMEGA) High Resolution Stereo Camera (HRSC) | 2003~present | [43,114,115,116] |
Mars Exploration Rovers: Spirit Opportunity | Rover Rover | Panoramic Cameras (Pancam) Miniature Thermal Emission Spectrometer (Mini-TES) Alpha Particle X-ray Spectrometer (APXS) | 2004~2009 2004~2022 | [117,118,119] |
Mars Reconnaissance Orbiter (MRO) | Orbiter | Mars Color Imager (MARCI) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) Mars Climate Sounder (MCS) | 2006~present | [120,121,122] |
Phoenix | Lander | Surface Stereo Imager (SSI) | 2008~2009 | [123] |
Mars Science Laboratory (MSL) Curiosity | Rover | Rover Environmental Monitoring Station (REMS) Mast Camera (Mastcam) | 2012~present | [41,124] |
ExoMars 2016 Trace Gas Orbiter (TGO) | Orbiter | Nadir and Occultation for Mars Discovery (NOMAD) Color and Stereo Surface Imaging System (CaSSIS) Atmospheric Chemistry Suit (ACS) | 2016~present | [125,126,127] |
Insight | Lander | Color Cameras Auxiliary Payload Sensor Suite | 2018~2022 | [128,129] |
Perseverance | Rover | Mastcam-Z SuperCam Mars Environmental Dynamics Analyzer (MEDA) | 2021~ | [130,131,132] |
Hope | Orbiter | Emirates Exploration Imager (EXI) | 2021~ | [133] |
Tianwen-1 | Orbiter | High-Resolution Imaging Camera (HiRiC) Medium Resolution Imaging Camera (MoRiC) Multispectral Camera (MSCam) | 2021~ | [134,135,136] |
Levels | VDOD Values | Actions |
---|---|---|
Level 1 | <0.7 | No restrictions. |
Level 2 | 0.7 < VDOD < 1.0 | No restrictions but watch the VDOD closely. |
Level 3 | 1.0 < VDOD < 2.0 | Scientific activities can only be carried out within reasonable limits during the day, with no overnight activities, and the operation team searches for possible parking points for rovers and protective measures for landers. |
Level 4 | 2.0 < VDOD < 3.0 | Start driving to a parking point to safely ride out the dust storm, allowing ONLY essential activities (VDOD observation and battery control board history). |
Level 5 | 3.0 < VDOD < 3.5 | Final drive to parking point, minimal activities ONLY (VDOD observation and battery control board history), begin ultra-high frequency (UHF) overflights per a couple of days, and wait for VDOD to drop. |
Level 6 | VDOD > 3.5 | Minimal activities ONLY (VDOD observation and battery control board history), UHF overflights per couple of days, and wait for VDOD to drop. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Rong, Z.; Wu, Z.; Gao, J.; Fan, K.; Zhou, X.; Yan, L.; Wang, Y.; Wei, Y. Martian Dust Storms: Reviews and Perspective for the Tianwen-3 Mars Sample Return Mission. Remote Sens. 2024, 16, 2613. https://doi.org/10.3390/rs16142613
He F, Rong Z, Wu Z, Gao J, Fan K, Zhou X, Yan L, Wang Y, Wei Y. Martian Dust Storms: Reviews and Perspective for the Tianwen-3 Mars Sample Return Mission. Remote Sensing. 2024; 16(14):2613. https://doi.org/10.3390/rs16142613
Chicago/Turabian StyleHe, Fei, Zhaojin Rong, Zhaopeng Wu, Jiawei Gao, Kai Fan, Xu Zhou, Limei Yan, Yuqi Wang, and Yong Wei. 2024. "Martian Dust Storms: Reviews and Perspective for the Tianwen-3 Mars Sample Return Mission" Remote Sensing 16, no. 14: 2613. https://doi.org/10.3390/rs16142613
APA StyleHe, F., Rong, Z., Wu, Z., Gao, J., Fan, K., Zhou, X., Yan, L., Wang, Y., & Wei, Y. (2024). Martian Dust Storms: Reviews and Perspective for the Tianwen-3 Mars Sample Return Mission. Remote Sensing, 16(14), 2613. https://doi.org/10.3390/rs16142613