Cell-Resolved PV Soiling Measurement Using Drone Images
Abstract
:1. Introduction
2. Methods
2.1. Optical Measurement Principle
2.2. Consideration of Electrical Mismatch Effects
3. Data
3.1. Measurement Setup
3.2. Measurement Procedure and Data Acquisition
3.3. Data Processing
3.3.1. Image Processing
3.3.2. Calculation of Electrical Losses for Calibration of and Validation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Optical Measurement Theory
Appendix A.1.1. Relation of the RGB Values to the Incoming Radiation
Appendix A.1.2. Contributions to the Camera Signal According to the Interaction at the Module’s Surface
Appendix A.1.3. Comparing the Camera Equation for the Clean and Soiled Case
Appendix A.1.4. Analyze Different Scattering Pathways
Nomenclature | Case Description |
---|---|
The incident irradiance is scattered in the direction of the camera without interacting with the glass cover. | |
The incident irradiance is scattered in the direction of the module. Then, it is refracted at the air–glass surface. Afterward, the light is reflected at the cell’s surface. Then, it is refracted at the glass–air surface. When leaving in the direction of the camera, the irradiance is transmitted through the soiling layer. | |
The incident irradiance is transmitted through the soiling layer. Then, it is refracted at the air–glass surface. At the cell’s surface, the irradiance is reflected. Then, it is refracted at the glass–air surface. When leaving the module, the irradiance is scattered in the direction of the camera. | |
The incident irradiance is transmitted through the soiling layer. Then, it is refracted at the air–glass surface. When reaching the cell’s surface, the irradiance is reflected. Then, it is refracted at the glass–air surface. When reaching the soiling layer for the second time, the light is scattered in the direction of the cell. Then, it is again refracted at the air–glass surface. Afterwards, the light is reflected by the cell surface for a second time. Then, it is refracted at the glass–air surface Finally, it is transmitted through the soiling layer in the direction of the camera. |
Nomenclature | Case Description |
---|---|
Angle between camera vector and sun vector; the camera vector is pointing in the direction of the module and the sun vector is pointing away from the module. | |
Angle between the sun reflex vector and the camera vector; both vectors are pointing away from the module. |
Appendix A.2. Calibration Measurements for the Determination of the Background Signal and the Conversion of the Brightness Increase to Soiling Losses
Appendix A.2.1. Determination of Expected Background Signal Corresponding to a Clean PV Module
Appendix A.2.2. Determination of the Scattering Behavior
Appendix A.2.3. Calculation of Soiling Loss
Appendix B
Appendix B.1. Analyses of All Measurements
Appendix B.1.1. First Campaign Second Flight
Appendix B.1.2. First Campaign Third Flight
Appendix B.1.3. First Campaign Fourth Flight
Appendix B.1.4. Second Campaign First Flight
Appendix B.1.5. Second Campaign Second Flight
Appendix B.1.6. Second Campaign Third Flight
Appendix B.1.7. Third Campaign First Flight
Appendix B.2. Electrical Reference Measurements for All Campaigns
Appendix B.2.1. First Campaign
Appendix B.2.2. Second Campaign
Appendix B.2.3. Third Campaign
Appendix B.3. Visualization of the Calibration Functions
Appendix B.3.1. Clean Background Calibration
Appendix B.3.2. Scattering Calibration
References
- Bouckaert, S.; Pales, A.F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D’Ambrosio, D.; Spencer, T. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency (IEA): Paris, France, 2021; p. 224. [Google Scholar]
- Gielen, D.; Gorini, R.; Wagner, N.; Leme, R.; Gutierrez, L.; Prakash, G.; Asmelash, E.; Janeiro, L.; Gallina, G.; Vale, G.; et al. Global Energy Transformation: A Roadmap to 2050; IRENA, International Energy Agency: Masdar City, Abu Dhabi, 2019; p. 52. [Google Scholar]
- Ilse, K.; Micheli, L.; Figgis, B.W.; Lange, K.; Daßler, D.; Hanifi, H.; Wolfertstetter, F.; Naumann, V.; Hagendorf, C.; Gottschalg, R.; et al. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.A.; Chaichan, M.T. Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. J. Energy Environ. 2013, 7, 152–159. [Google Scholar]
- Vumbugwa, M.; McCleland, J.C.; Van Dyk, E.; Vorster, F.; Serameng, T. Effects of current mismatch due to uneven soiling on the performance of multi-crystalline silicon module strings. J. Energy S. Afr. 2020, 31, 62–72. [Google Scholar] [CrossRef]
- Ma, M.; Liu, H.; Zhang, Z.; Yun, P.; Liu, F. Rapid diagnosis of hot spot failure of crystalline silicon PV module based on IV curve. Microelectron. Reliab. 2019, 100, 113402. [Google Scholar] [CrossRef]
- Schill, C.; Brachmann, S.; Koehl, M. Impact of soiling on IV-curves and efficiency of PV-modules. Sol. Energy 2015, 112, 259–262. [Google Scholar] [CrossRef]
- Chen, D.; Contreras, M.V.; Ciesla, A.; Hamer, P.; Hallam, B.; Abbott, M.; Chan, C. Progress in the understanding of light-and elevated temperature-induced degradation in silicon solar cells: A review. Prog. Photovolt. Res. Appl. 2021, 29, 1180–1201. [Google Scholar] [CrossRef]
- de Oliveira, M.C.; Cardoso, A.S.; Viana, M.M.; Lins, V.D. The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renew. Sustain. Energy Rev. 2018, 81, 2299–2317. [Google Scholar] [CrossRef]
- García, M.C.A.; Herrmann, W.; Böhmer, W.; Proisy, B. Thermal and electrical effects caused by outdoor hot-spot testing in associations of photovoltaic cells. Prog. Photovolt. Res. Appl. 2003, 11, 293–307. [Google Scholar] [CrossRef]
- Wendlandt, S.; Drobisch, A.; Buseth, T.; Krauter, S.; Grunow, P. Hot spot risk analysis on silicon cell modules. In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 6–10 September 2010. [Google Scholar]
- Yang, H.; Xu, W.; Wang, H.; Narayanan, M. Investigation of reverse current for crystalline silicon solar cells—New concept for a test standard about the reverse current. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010. [Google Scholar]
- Dhoke, A.; Sharma, R.; Saha, T.K. Condition monitoring of a large-scale PV power plant in Australia. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar]
- Firth, S.; Lomas, K.; Rees, S. A simple model of PV system performance and its use in fault detection. Sol. Energy 2010, 84, 624–6355. [Google Scholar] [CrossRef]
- Micheli, L.; Fernández, E.F.; Fernández-Solas, Á.; Bessa, J.G.; Almonacid, F. Analysis and mitigation of nonuniform soiling distribution on utility-scale photovoltaic systems. Prog. Photovolt. Res. Appl. 2022, 30, 211–228. [Google Scholar] [CrossRef]
- Gostein, M.; Littmann, B.; Caron, J.R.; Dunn, L. Comparing PV power plant soiling measurements extracted from PV module irradiance and power measurements. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013. [Google Scholar]
- Gostein, M.; Caron, J.R.; Littmann, B. Measuring soiling losses at utility-scale PV power plants. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014. [Google Scholar]
- Gostein, M.; Duster, T.; Thuman, C. Accurately measuring PV soiling losses with soiling station employing module power measurements. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- Figgis, B.; Ennaoui, A.; Ahzi, S.; Rémond, Y. Review of PV soiling measurement methods. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016. [Google Scholar]
- Wolfertstetter, F.; Esquelli, A.; Wilbert, S.; Hanrieder, N.; Blum, N.; Korevaar, M.; Bergmans, T.; Zarzalejo, L.; Polo, J.; Alami-Merrouni, A.; et al. Incidence angle and diffuse radiation adaptation of soiling ratio measurements of indirect optical soiling sensors. J. Renew. Sustain. Energy 2021, 13, 033703. [Google Scholar] [CrossRef]
- Micheli, L.; Muller, M. An investigation of the key parameters for predicting PV soiling losses. Prog. Photovolt. Res. Appl. 2017, 25, 291–307. [Google Scholar] [CrossRef]
- Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W. Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision. Energies 2018, 11, 2252. [Google Scholar] [CrossRef]
- Niazi, K.; Akhtar, W.; Khan, H.A.; Sohaib, S.; Nasir, A.K. Binary classification of defective solar PV modules using thermography. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018. [Google Scholar]
- Wu, J.; Chan, E.; Yadav, R.; Gopalakrishna, H.; TamizhMani, G. Durability evaluation of PV modules using image processing tools. In Proceedings of the New Concepts in Solar and Thermal Radiation Conversion and Reliability, San Diego, CA, USA, 19–21 August 2018. [Google Scholar]
- Buerhop, C.; Schlegel, D.; Niess, M.; Vodermayer, C.; Weißmann, R.; Brabec, C. Reliability of IR-imaging of PV-plants under operating conditions. Sol. Energy Mater. Sol. Cells 2012, 107, 154–164. [Google Scholar] [CrossRef]
- Qasem, H.; Mnatsakanyan, A.; Banda, P. Assessing dust on PV modules using image processing techniques. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016. [Google Scholar]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy 2019, 189, 116319. [Google Scholar] [CrossRef]
- Yap, W.K.; Galet, R.; Yeo, K.C. Quantitative analysis of dust and soiling on solar pv panels in the tropics utilizing image-processing methods. In Proceedings of the Asia-Pacific Solar Research Conference, Sydney, Australia, 3–5 December 2015. [Google Scholar]
- Yfantis, E.; Fayed, A. A camera system for detecting dust and other deposits on solar panels. Adv. Image Video Process. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Chen, Z.; Luo, X.; Yan, W. Visible defects detection based on UAV-based inspection in large-scale photovoltaic systems. IET Renew. Power Gener. 2017, 11, 1234–1244. [Google Scholar] [CrossRef]
- Hwang, P.C.; Ku, C.C.-Y.; Chan, J.C.-C. Soiling detection for photovoltaic modules based on an intelligent method with image processing. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 28–30 September 2020. [Google Scholar]
- Cavieres, R.; Barraza, R.; Estay, D.; Bilbao, J.; Valdivia-Lefort, P. Automatic soiling and partial shading assessment on PV modules through RGB images analysis. Appl. Energy 2022, 306, 117964. [Google Scholar] [CrossRef]
- Mehta, S.; Azad, A.P.; Chemmengath, S.A.; Raykar, V.; Kalyanaraman, S. Deepsolareye: Power loss prediction and weakly supervised soiling localization via fully convolutional networks for solar panels. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018. [Google Scholar]
- Yang, M.; Javed, W.; Guo, B.; Ji, J. Estimating PV Soiling Loss Using Panel Images and a Feature-Based Regression Model. IEEE J. Photovolt. 2024, 14, 661–668. [Google Scholar] [CrossRef]
- Gostein, M.; Stueve, B.; Brophy, B.; Jung, K.; Martinez-Morales, A.; Zhang, S.; Jin, Y.; Xu, J. Soiling measurement station to evaluate anti-soiling properties of PV module coatings. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016. [Google Scholar]
- Holmgren, W.F.; Andrews, R.W.; Lorenzo, A.T.; Stein, J.S. PVLIB python 2015. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar]
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Prahl, C. Photogrammetric Measurement of the Optical Performance of Parabolic Trough Solar Fields. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2019. [Google Scholar]
- Dunn, L.; Littmann, B.; Caron, J.R.; Gostein, M. PV module soiling measurement uncertainty analysis. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013. [Google Scholar]
- Peterson, J.; Chard, J.; Robinson, J. Extraction of Prevailing Soiling Rates from Soiling Measurement Data. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 5–10 June 2022. [Google Scholar]
- Kuhn, P.; Wilbert, S.; Prahl, C.; Schüler, D.; Haase, T.; Hirsch, T.; Wittmann, M.; Ramirez, L.; Zarzalejo, L.; Meyer, A.; et al. Shadow camera system for the generation of solar irradiance maps. Sol. Energy 2017, 157, 157–170. [Google Scholar] [CrossRef]
- Wilbert, S. Weiterentwicklung Eines Optischen Messsystems zur Bestimmung der Formabweichungen von Konzentratoren Solarthermischer Kraftwerke unter Dynamischem Windeinfluss. Ph.D. Thesis, DLR/Universität, Bonn, Germany, 2009. [Google Scholar]
- Heimsath, A.; Nitz, P. The effect of soiling on the reflectance of solar reflector materials-Model for prediction of incidence angle dependent reflectance and attenuation due to dust deposition. Sol. Energy Mater. Sol. Cells 2019, 195, 258–268. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkel, P.; Wilbert, S.; Röger, M.; Krauth, J.J.; Algner, N.; Nouri, B.; Wolfertstetter, F.; Carballo, J.A.; Alonso-Garcia, M.C.; Polo, J.; et al. Cell-Resolved PV Soiling Measurement Using Drone Images. Remote Sens. 2024, 16, 2617. https://doi.org/10.3390/rs16142617
Winkel P, Wilbert S, Röger M, Krauth JJ, Algner N, Nouri B, Wolfertstetter F, Carballo JA, Alonso-Garcia MC, Polo J, et al. Cell-Resolved PV Soiling Measurement Using Drone Images. Remote Sensing. 2024; 16(14):2617. https://doi.org/10.3390/rs16142617
Chicago/Turabian StyleWinkel, Peter, Stefan Wilbert, Marc Röger, Julian J. Krauth, Niels Algner, Bijan Nouri, Fabian Wolfertstetter, Jose Antonio Carballo, M. Carmen Alonso-Garcia, Jesus Polo, and et al. 2024. "Cell-Resolved PV Soiling Measurement Using Drone Images" Remote Sensing 16, no. 14: 2617. https://doi.org/10.3390/rs16142617
APA StyleWinkel, P., Wilbert, S., Röger, M., Krauth, J. J., Algner, N., Nouri, B., Wolfertstetter, F., Carballo, J. A., Alonso-Garcia, M. C., Polo, J., Fernández-García, A., & Pitz-Paal, R. (2024). Cell-Resolved PV Soiling Measurement Using Drone Images. Remote Sensing, 16(14), 2617. https://doi.org/10.3390/rs16142617