Burned-Area Mapping Using Post-Fire PlanetScope Images and a Convolutional Neural Network
Abstract
:1. Introduction
2. Study Area and Data
2.1. PlanetScope Data
2.2. Reference Data
3. Methodology
3.1. U-Net
3.2. Performance Assessment
3.3. Transferability Experiments
4. Result
4.1. The Performance of Each Scheme
4.2. Spatial Examination of Burned Area Detection Errors
4.3. Evaluation of Model Transferability: A Case Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, K.; Kim, B.; Park, S. Evaluating the potential of burn severity mapping and transferability of Copernicus EMS data using Sentinel-2 imagery and machine learning approaches. GISci. Remote Sens. 2023, 60, 2192157. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.; Modica, G. A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems. GISci.Remote Sens. 2021, 58, 516–541. [Google Scholar] [CrossRef]
- Yarragunta, Y.; Srivastava, S.; Mitra, D.; Chandola, H.C. Influence of Forest Fire Episodes on the Distribution of Gaseous Air Pollutants over Uttarakhand, India. GISci. Remote Sens. 2020, 57, 190–206. [Google Scholar] [CrossRef]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.A.; Passas, N. Forest fire risk analysis. Hum. Ecol. Risk Assess. 2005, 11, 617–626. [Google Scholar] [CrossRef]
- Tian, X.R.; Mcrae, D.J.; Shu, L.F.; Wang, M.Y.; Hong, L. Satellite remote-sensing technologies used in forest fire management. J. For. Res. 2005, 16, 7. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Chu, J.; Frankenberg, E.; Thomas, D. Assessment and prediction of natural hazards from satellite imagery. Prog. Phys. Geogr. 2007, 31, 459–470. [Google Scholar] [CrossRef]
- Rashkovetsky, D.; Mauracher, F.; Langer, M.; Schmitt, M. Wildfire detection from multisensor satellite imagery using deep semantic segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7001–7016. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Kang, Y.; Jang, E.; Im, J.; Kwon, C. A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency. GISci. Remote Sens. 2022, 59, 2019–2035. [Google Scholar] [CrossRef]
- Rauste, Y.; Herland, E.; Frelander, H.; Soini, K.; Kuoremaki, T.; Ruokari, A. Satellite-based forest fire detection for fire control in boreal forests. Int. J. Remote Sens. 1997, 18, 2641–2656. [Google Scholar] [CrossRef]
- Lasaponara, R. Inter-comparison of AVHRR-based fire danger estimation methods. Int. J. Remote Sens. 2005, 26, 853–870. [Google Scholar] [CrossRef]
- Lasaponara, R. Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data. Ecol. Model. 2006, 196, 265–270. [Google Scholar] [CrossRef]
- Pontes-Lopes, A.; Dalagnol, R.; Dutra, A.C.; de Jesus Silva, C.V.; de Alencastro Graça, P.M.L.; de Oliveira e Cruz de Aragão, L.E. Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. Remote Sens. 2022, 14, 1545. [Google Scholar] [CrossRef]
- Jiao, L.; Bo, Y. Near Real-Time Mapping of Burned Area by Synergizing Multiple Satellites Remote-Sensing Data. GISci. Remote Sens. 2022, 59, 1956–1977. [Google Scholar] [CrossRef]
- Weber, K.T.; Seefeldt, S.; Moffet, C.; Norton, J. Comparing fire severity models from post-fire and pre/post-fire differenced imagery. GISci. Remote Sens. 2008, 45, 392–405. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON Fire Effects Monitoring and Inventory System; Gen Tech Rep RMRS-GTR-164-CD; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherl, S., Gangi, L.J., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 164, p. LA-1-55. [Google Scholar]
- Ramayanti, S.; Kim, B.; Park, S.; Lee, C.W. Wildfire susceptibility mapping by incorporating damage proxy maps, differenced normalized burn Ratio, and deep learning algorithms based on sentinel-1/2 data: A case study on Maui Island, Hawaii. GISci. Remote Sens. 2024, 61, 2353982. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Afira, N.; Wijayanto, A.W. Mono-temporal and multi-temporal approaches for burnt area detection using Sentinel-2 satellite imagery (a case study of Rokan Hilir Regency, Indonesia). Ecol Inform. 2022, 69, 101677. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Schmidt, G.L.; Beal, Y.J.; Picotte, J.J.; Takacs, J.D.; Falgout, J.T.; Dwyer, J.L. The Landsat Burned Area algorithm and products for the conterminous United States. Remote Sens. Environ. 2020, 244, 111801. [Google Scholar] [CrossRef]
- Syifa, M.; Panahi, M.; Lee, C.W. Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: The case of the camp fire wildfire in California, USA. Remote Sens. 2020, 12, 623. [Google Scholar] [CrossRef]
- Gaveau, D.L.; Descals, A.; Salim, M.A.; Sheil, D.; Sloan, S. Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning. Earth Syst. Sci. Data 2021, 13, 5353–5368. [Google Scholar] [CrossRef]
- Liu, C.C.; Kuo, Y.C.; Chen, C.W. Emergency responses to natural disasters using Formosat-2 high-spatiotemporal-resolution imagery: Forest fires. Nat. Hazards. 2013, 66, 1037–1057. [Google Scholar] [CrossRef]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.C.; Brewster, K.; Green, T.M.; Serbin, S.P. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef]
- Humber, M.L.; Boschetti, L.; Giglio, L. Assessing the shape accuracy of coarse resolution burned area identifications. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1516–1526. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Lee, D.; Son, S.; Bae, J.; Park, S.; Seo, J.; Seo, D.; Lee, Y.; Kim, J. Single-Temporal Sentinel-2 for Analyzing Burned Area Detection Methods: A Study of 14 Cases in Republic of Korea Considering Land Cover. Remote Sens. 2024, 16, 884. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suárez-Seoane, S.; Kelly, M.; Luis, E. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sens. Environ. 2008, 112, 708–719. [Google Scholar] [CrossRef]
- Loepfe, L.; Rodrigo, A.; Lloret, F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa. Reg. Environ. Chang. 2014, 14, 1395–1404. [Google Scholar] [CrossRef]
- Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sens. Environ. 2020, 245, 111839. [Google Scholar] [CrossRef]
- Pacheco, A.d.P.; Junior, J.A.d.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. [Google Scholar] [CrossRef]
- Hu, X.; Ban, Y.; Nascetti, A. Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens. 2021, 13, 1509. [Google Scholar] [CrossRef]
- Lee, C.; Park, S.; Kim, T.; Liu, S.; Md Reba, M.N.; Oh, J.; Han, Y. Machine Learning-Based Forest Burned Area Detection with Various Input Variables: A Case Study of South Korea. Appl. Sci. 2022, 12, 10077. [Google Scholar] [CrossRef]
- Gonçalves, D.N.; Junior, J.M.; Carrilho, A.C.; Acosta, P.R.; Ramos, A.P.M.; Gomes, F.D.G.; Osco, A.P.R.; Oliveira, M.D.R.; Martins, J.A.C.; Júnior, G.A.D.; et al. Transformers for mapping burned areas in Brazilian Pantanal and Amazon with PlanetScope imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103151. [Google Scholar] [CrossRef]
- Farasin, A.; Colomba, L.; Garza, P. Double-step u-net: A deep learning-based approach for the estimation of wildfire damage severity through sentinel-2 satellite data. Appl. Sci. 2020, 10, 4332. [Google Scholar] [CrossRef]
- Burrows, N.; Stephens, C.; Wills, A.; Densmore, V. Fire mosaics in south-west Australian forest landscapes. Int. J. Wildland Fire 2021, 30, 933–945. [Google Scholar] [CrossRef]
- Al-Dabbagh, A.M.; Ilyas, M. Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models. Geomat. Nat. Hazards Risk. 2023, 14, 2196370. [Google Scholar] [CrossRef]
- Shirvani, Z.; Abdi, O.; Goodman, R.C. High-resolution semantic segmentation of woodland fires using residual attention UNet and time series of Sentinel-2. Remote Sens. 2023, 15, 1342. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Yates, C.; Vernooij, R.; Eames, T.; Lucas, D.; Mbindo, K.; Banda, S.; Mukoma, K.; Kaluka, A.; Liseli, A.; et al. Framework for a savanna burning emissions abatement methodology applicable to fire-prone miombo woodlands in southern Africa. Int. J. Wildland Fire 2024, 33. [Google Scholar] [CrossRef]
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- Planet’s Education and Research (E&R) Program; Planet Team. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. 2017. Available online: https://api.planet.com (accessed on 3 September 2023).
- Illera, P.; Fernandez, A.; Delgado, J.A. Temporal evolution of the NDVI as an indicator of forest fire danger. Int. J. Remote Sens. 1996, 17, 1093–1105. [Google Scholar] [CrossRef]
- Novo, A.; Fariñas-Álvarez, N.; Martínez-Sánchez, J.; González-Jorge, H.; Fernández-Alonso, J.M.; Lorenzo, H. Mapping forest fire risk—A case study in Galicia (Spain). Remote Sens. 2020, 12, 3705. [Google Scholar] [CrossRef]
- Jodhani, K.H.; Patel, H.; Soni, U.; Patel, R.; Valodara, B.; Gupta, N.; Patel, A.; Omar, P.J. Assessment of forest fire severity and land surface temperature using Google Earth Engine: A case study of Gujarat State, India. Fire Ecol. 2024, 20, 23. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Pompa-García, M.; Martínez-Rivas, J.A.; Valdez-Cepeda, R.D.; Aguirre-Salado, C.A.; Rodríguez-Trejo, D.A.; Miranda-Aragón, L.; Rodríguez-Flores, F.D.; Vega-Nieva, D.J. NDVI Values Suggest Immediate Responses to Fire in an Uneven-Aged Mixed Forest Stand. Forests 2022, 13, 1901. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M.; Murden, D. Airborne hyperspectral imagery and yield monitor data for mapping cotton yield variability. Precis. Agric. 2004, 5, 445–461. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between blue-and red-based vegetation indices and leaf area and yield of alfalfa. Crop. Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Michael, Y.; Lensky, I.M.; Brenner, S.; Tchetchik, A.; Tessler, N.; Helman, D. Economic assessment of fire damage to urban forest in the wildland–urban interface using planet satellites constellation images. Remote Sens. 2018, 10, 1479. [Google Scholar] [CrossRef]
- Tran, B.N.; Tanase, M.A.; Bennett, L.T.; Aponte, C. Evaluation of spectral indices for assessing fire severity in Australian temperate forests. Remote Sens. 2018, 10, 1680. [Google Scholar] [CrossRef]
- Gerrevink, M.J.V.; Veraverbeke, S. Evaluating the near and mid infrared bi-spectral space for assessing fire severity and comparison with the differenced normalized burn ratio. Remote Sens. 2021, 13, 695. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. IEEE Int. Conf. Comput. Vis. (ICCV 2015) 2015, 1502, 1026–1034. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- Löw, M.; Koukal, T. Phenology modelling and forest disturbance mapping with Sentinel-2 time series in Austria. Remote Sens. 2020, 12, 4191. [Google Scholar] [CrossRef]
- Chéret, V.; Denux, J.P. Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GISci. Remote Sens. 2011, 48, 171–194. [Google Scholar] [CrossRef]
- Lacouture, D.L.; Broadbent, E.N.; Crandall, R.M. Detecting vegetation recovery after fire in a fire-frequented habitat using normalized difference vegetation index (NDVI). Forests 2020, 11, 749. [Google Scholar] [CrossRef]
- Karamesouti, M.; Kairis, O.; Gasparatos, D.; Lakes, T. Map-based soil crusting susceptibility assessment using pedotransfer Rules, CORINE and NDVI: A preliminary study in Greece. Ecol. Indic. 2023, 154, 110668. [Google Scholar] [CrossRef]
- Gypser, S.; Herppich, W.B.; Fischer, T.; Lange, P.; Veste, M. Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany. Flora Morphol. Distrib. Funct. Ecol. Plants 2016, 220, 103–116. [Google Scholar] [CrossRef]
- Kleefeld, A.; Gypser, S.; Herppich, W.B.; Bader, G.; Veste, M. Identification of spatial pattern of photosynthesis hotspots in moss-and lichen-dominated biological soil crusts by combining chlorophyll fluorescence imaging and multispectral BNDVI images. Pedobiologia 2018, 68, 1–11. [Google Scholar] [CrossRef]
- Morales-Gallegos, L.M.; Martínez-Trinidad, T.; Hernández-de la Rosa, P.; Gómez-Guerrero, A.; Alvarado-Rosales, D.; Saavedra-Romero, L.D.L. Tree Health Condition in Urban Green Areas Assessed through Crown Indicators and Vegetation Indices. Forests 2023, 14, 1673. [Google Scholar] [CrossRef]
- Bhavsar, D.; Kumar, A.; Roy, A. Applicability of NDVI temporal database for western Himalaya forest mapping using fuzzy-based PCM classifier. Eur. J. Remote Sens. 2017, 50, 614–625. [Google Scholar] [CrossRef]
- Maleki, M.; Arriga, N.; Barrios, J.; Wieneke, S.; Liu, Q.; Penuelas, J.; Janssens, I.; Balzarolo, M. Estimation of Gross Primary Productivity (GPP) Phenology of a Short-Rotation Plantation Using Remotely Sensed Indices Derived from Sentinel-2 Images. Remote Sens. 2020, 12, 2104. [Google Scholar] [CrossRef]
- Torgbor, B.A.; Rahman, M.M.; Robson, A.; Brinkhoff, J.; Khan, A. Assessing the potential of sentinel-2 derived vegetation indices to retrieve phenological stages of mango in Ghana. Horticulturae 2021, 8, 11. [Google Scholar] [CrossRef]
Schemes | Input Channel |
---|---|
S1 | R, G, B, and NIR |
S2 | R, G, B, NIR, and NDVI |
S3 | R, G, B, NIR, and GNDVI |
S4 | R, G, B, NIR, and BNDVI |
S5 | R, G, B, NIR, NDVI, GNDVI, and BNDVI |
S6 | NIR, NDVI, GNDVI, and BNDVI |
Scheme | Class | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|---|
S1 | NFA | 0.969 | 0.921 | 0.945 | 0.903 |
FA | 0.947 | 0.970 | 0.958 | 0.925 | |
BA | 0.959 | 0.971 | 0.965 | 0.936 | |
S2 | NFA | 0.958 | 0.943 | 0.951 | 0.920 |
FA | 0.955 | 0.966 | 0.960 | 0.934 | |
BA | 0.966 | 0.961 | 0.964 | 0.936 | |
S3 | NFA | 0.954 | 0.943 | 0.949 | 0.914 |
FA | 0.955 | 0.959 | 0.957 | 0.928 | |
BA | 0.957 | 0.963 | 0.960 | 0.930 | |
S4 | NFA | 0.953 | 0.947 | 0.950 | 0.917 |
FA | 0.945 | 0.964 | 0.955 | 0.927 | |
BA | 0.971 | 0.932 | 0.951 | 0.923 | |
S5 | NFA | 0.946 | 0.952 | 0.949 | 0.915 |
FA | 0.965 | 0.954 | 0.960 | 0.929 | |
BA | 0.958 | 0.976 | 0.967 | 0.938 | |
S6 | NFA | 0.946 | 0.952 | 0.949 | 0.914 |
FA | 0.964 | 0.956 | 0.960 | 0.930 | |
BA | 0.961 | 0.970 | 0.965 | 0.937 |
Scheme | Class | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|---|
S1 | NFA | 0.944 | 0.957 | 0.951 | 0.901 |
FA | 0.915 | 0.886 | 0.900 | 0.841 | |
BA | 0.963 | 0.961 | 0.962 | 0.940 | |
S2 | NFA | 0.932 | 0.968 | 0.949 | 0.900 |
FA | 0.929 | 0.870 | 0.899 | 0.835 | |
BA | 0.972 | 0.943 | 0.957 | 0.934 | |
S3 | NFA | 0.957 | 0.929 | 0.943 | 0.883 |
FA | 0.877 | 0.909 | 0.893 | 0.823 | |
BA | 0.941 | 0.974 | 0.957 | 0.927 | |
S4 | NFA | 0.951 | 0.949 | 0.950 | 0.902 |
FA | 0.896 | 0.909 | 0.902 | 0.845 | |
BA | 0.964 | 0.955 | 0.960 | 0.935 | |
S5 | NFA | 0.962 | 0.935 | 0.948 | 0.893 |
FA | 0.872 | 0.935 | 0.902 | 0.838 | |
BA | 0.963 | 0.960 | 0.962 | 0.939 | |
S6 | NFA | 0.937 | 0.965 | 0.951 | 0.896 |
FA | 0.926 | 0.867 | 0.896 | 0.823 | |
BA | 0.968 | 0.961 | 0.964 | 0.942 |
Schemes | Precision (%) | ||
---|---|---|---|
NFA | FA | BA | |
S1 | 82.8 | 93.8 | 44.0 |
S2 | 86.2 | 94.2 | 34.6 |
S3 | 91.1 | 93.1 | 40.6 |
S4 | 94.3 | 87.6 | 43.2 |
S5 | 89.9 | 94.8 | 38.5 |
S6 | 91.2 | 95.6 | 16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Lee, K.; Park, S. Burned-Area Mapping Using Post-Fire PlanetScope Images and a Convolutional Neural Network. Remote Sens. 2024, 16, 2629. https://doi.org/10.3390/rs16142629
Kim B, Lee K, Park S. Burned-Area Mapping Using Post-Fire PlanetScope Images and a Convolutional Neural Network. Remote Sensing. 2024; 16(14):2629. https://doi.org/10.3390/rs16142629
Chicago/Turabian StyleKim, Byeongcheol, Kyungil Lee, and Seonyoung Park. 2024. "Burned-Area Mapping Using Post-Fire PlanetScope Images and a Convolutional Neural Network" Remote Sensing 16, no. 14: 2629. https://doi.org/10.3390/rs16142629
APA StyleKim, B., Lee, K., & Park, S. (2024). Burned-Area Mapping Using Post-Fire PlanetScope Images and a Convolutional Neural Network. Remote Sensing, 16(14), 2629. https://doi.org/10.3390/rs16142629