Multi-Wave Structures of Traveling Ionospheric Disturbances Associated with the 2022 Tonga Volcanic Eruptions in the New Zealand and Australia Regions
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. 2D DTEC Maps of TIDs
3.2. Keograms of Disturbances
3.3. Onset Times of Multiple Volcanic Explosions
4. Discussion
4.1. Excitation Characteristics of the Shock Waves
4.2. Propagation Mechanisms of the Lamb Waves
5. Conclusions
- (1)
- Two shock waves, with 724–750 and 445–471 m/s propagation velocities, and two Lamb waves, with 300–370 and 250 m/s propagation velocities, were observed in the GNSS–TEC data following the eruptions.
- (2)
- Based on the time delays of TIDs among the GNSS stations, we estimated the onset times of two major volcanic eruptions, which occurred at 04:20:54 UT ± 116 s and 04:24:37 UT ± 141 s. We inferred and verified that the multiple eruptions corresponded to distinct shock wave-related TIDs.
- (3)
- Disturbances associated with Lamb waves were identified in both TEC data and brightness temperature measurements, whereas those related to shock waves were not detected in the brightness temperature observations. Furthermore, the Lamb wave-related TIDs exhibited almost no attenuation during global propagation, while the shock waves suffered severe attenuation. These observations indicate that Lamb waves and shock waves have different propagation mechanisms.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, K.; Huang, Y.N. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res. 1992, 97, 16995–17004. [Google Scholar] [CrossRef]
- Dautermann, T.; Calais, E.; Lognonné, P.; Mattioli, G.S. Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere hills volcano, Montserrat. Geophys. J. Int. 2009, 179, 1537–1546. [Google Scholar] [CrossRef]
- Dautermann, T.; Calais, E.; Mattioli, G.S. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J. Geophys. Res. 2009, 114, B02202. [Google Scholar] [CrossRef]
- Delclos, C.; Blanc, E.; Broche, P.; Glangeaud, F.; Lacoume, J.L. Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens. J. Geophys. Res. 1990, 95, 5485–5494. [Google Scholar] [CrossRef]
- Heki, K. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances. Geophys. Res. Lett. 2006, 33, L14303. [Google Scholar] [CrossRef]
- Liu, C.H.; Klostermeyer, J.; Yeh, K.C.; Jones, T.B.; Robinson, T.; Holt, O.; Leitinger, R.; Ogawa, T.; Sinno, K.; Kato, S.; et al. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J. Geophys. Res. 1982, 87, 6281–6290. [Google Scholar] [CrossRef]
- Manta, F.; Occhipinti, G.; Hill, E.M.; Perttu, A.; Assink, J.; Taisne, B. Correlation between GNSS-TEC and eruption magnitude supports the use of ionospheric sensing to complement volcanic hazard assessment. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020726. [Google Scholar] [CrossRef]
- Nakashima, Y.; Heki, K.; Takeo, A.; Cahyadi, M.N.; Aditiya, A.; Yoshizawa, K. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth Planet. Sci. Lett. 2016, 434, 112–116. [Google Scholar] [CrossRef]
- Pekeris, C.L. The Propagation of a Pulse in the Atmosphere. Proc. R. Soc. Lond. 1939, 171, 434–449. [Google Scholar] [CrossRef]
- Shults, K.; Astafyeva, E.; Adourian, S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys. 2016, 121, 10303–10315. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Yue, J.; Shen, Y.; Yang, Y. Total electron content anomalies associated with global VEI4+ volcanic eruptions during 2002–2015. J. Volcanol. Geotherm. Res. 2016, 325, 98–109. [Google Scholar] [CrossRef]
- Astafyeva, E. Ionospheric detection of natural hazards. Rev. Geophys. 2019, 57, 1265–1288. [Google Scholar] [CrossRef]
- Kubota, T.; Saito, T.; Nishida, K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science 2022, 377, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Omira, R.; Ramalho, R.S.; Kim, J.; González, P.J.; Kadri, U.; Miranda, J.M.; Carrilho, F.; Baptista, M.A. Global Tonga tsunami explained by a fast-moving atmospheric source. Nature 2022, 609, 734–740. [Google Scholar] [CrossRef]
- Wright, C.J.; Hindley, N.P.; Alexander, M.J.; Barlow, M.; Hoffmann, L.; Mitchell, C.N.; Prata, F.; Bouillon, M.; Carstens, J.; Clerbaux, C.; et al. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption. Nature 2022, 609, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Aa, E.; Zhang, S.-R.; Erickson, P.J.; Vierinen, J.; Coster, A.J.; Goncharenko, L.P.; Spicher, A.; Rideout, W. Significant ionospheric hole and equatorial plasma bubbles after the 2022 Tonga volcano eruption. Space Weather 2022, 20, e2022SW003101. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.-R.; Wang, W.; Erickson, P.J.; Qian, L.; Eastes, R.; Harding, B.J.; Immel, T.J.; Karan, D.K.; Daniell, R.E.; et al. Pronounced suppression and X-pattern merging of equatorial ionization anomalies after the 2022 Tonga volcano eruption. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030527. [Google Scholar] [CrossRef]
- Li, X.; Ding, F.; Yue, X.; Mao, T.; Xiong, B.; Song, Q. Multiwave structure of traveling ionospheric disturbances excited by the Tonga volcanic eruptions observed by a dense GNSS network in China. Space Weather 2023, 21, e2022SW003210. [Google Scholar] [CrossRef]
- Lin, J.-T.; Rajesh, P.K.; Lin, C.C.H.; Chou, M.-Y.; Liu, J.-Y.; Yue, J.; Hsiao, T.-Y.; Tsai, H.-F.; Chao, H.-M.; Kung, M.-M. Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the northern hemisphere after Hunga Tonga volcano eruptions. Geophys. Res. Lett. 2022, 49, e2022GL098222. [Google Scholar] [CrossRef]
- Robin, S.M.; David, F.; Jelle, D.; Alexandra, M.; David, N.; Keehoon, K. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022, 377, 95–100. [Google Scholar] [CrossRef]
- Themens, D.R.; Watson, C.; Žagar, N.; Vasylkevych, S.; Elvidge, S.; McCaffrey, A.; Prikryl, P.; Reid, B.; Wood, A.; Jayachandran, P.T. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett. 2022, 49, e2022GL098158. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Vierinen, J.; Aa, E.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; Coster, A.J.; Spicher, A. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front. Astron. Space Sci. 2022, 9, 871275. [Google Scholar] [CrossRef]
- Li, J.; Chen, K.; Chai, H.; Lin, J.; Zhou, Z.; Zhu, H.; Lyu, M. Ionospheric disturbance analysis of the January 15, 2022 Tonga eruption based on GPS data. Sci. China Earth Sci. 2023, 66, 1798–1813. [Google Scholar] [CrossRef]
- Zhou, M.; Gao, H.; Yu, D.; Guo, J.; Zhu, L.; Yang, L.; Pan, S. Analysis of the Anomalous Environmental Response to the 2022 Tonga Volcanic Eruption Based on GNSS. Remote Sens. 2022, 14, 4847. [Google Scholar] [CrossRef]
- He, J.; Astafyeva, E.; Yue, X.; Ding, F.; Maletckii, B. The giant ionospheric depletion on 15 January 2022 around the Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030984. [Google Scholar] [CrossRef]
- Hong, J.; Kil, H.; Lee, W.K.; Kwak, Y.-S.; Choi, B.-K.; Paxton, L.J. Detection of different properties of ionospheric perturbations in the vicinity of the Korean Peninsula after the Hunga-Tonga volcanic eruption on 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL099163. [Google Scholar] [CrossRef]
- Huba, J.D.; Becker, E.; Vadas, S.L. Simulation study of the 15 January 2022 Tonga event: Development of super equatorial plasma bubbles. Geophys. Res. Lett. 2023, 50, e2022GL101185. [Google Scholar] [CrossRef]
- Harding, B.J.; Wu, Y.-J.J.; Alken, P.; Yamazaki, Y.; Triplett, C.C.; Immel, T.J.; Gasque, L.C.; Mende, S.B.; Xiong, C. Impacts of the January 2022 Tonga volcanic eruption on the ionospheric dynamo: ICON-MIGHTI and Swarm observations of extreme neutral winds and currents. Geophys. Res. Lett. 2022, 49, e2022GL098577. [Google Scholar] [CrossRef]
- Gupta, A.K.; Bennartz, R.; Fauria, K.E.; Mittal, T. Eruption chronology of the December 2021 to January 2022 Hunga Tonga-Hunga Ha’apai eruption sequence. Commun. Earth Environ. 2022, 3, 314. [Google Scholar] [CrossRef]
- Xiong, B.; Li, X.L.; Wan, W.X.; She, C.L.; Hu, L.H.; Ding, F.; Zhao, B.Q. A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem. Chin. J. Geophys. 2019, 62, 1199–1209. [Google Scholar] [CrossRef]
- Zou, X.; Zhuge, X.; Weng, F. Characterization of Bias of Advanced Himawari Imager Infrared Observations from NWP Background Simulations Using CRTM and RTTOV. J. Atmos. Ocean. Technol. 2016, 33, 2553–2567. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Ning, B.; Zhao, B.; Li, Q.; Zhang, R.; Xiong, B.; Song, Q. Two-dimensional imaging of large-scale traveling ionospheric disturbances over China based on GPS data. J. Geophys. Res. Space Phys. 2012, 117, A08318. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Li, Q.; Zhang, R.; Song, Q.; Ning, B.; Liu, L.; Zhao, B.; Xiong, B. Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011–2012. J. Geophys. Res. 2014, 119, 519–529. [Google Scholar] [CrossRef]
- Ding, F.; Mao, T.; Hu, L.; Ning, B.; Wan, W.; Wang, Y. GPS network observation of traveling ionospheric disturbances following the Chelyabinsk meteorite blast. Ann. Geophys. 2016, 34, 1045–1051. [Google Scholar] [CrossRef]
- Francis, S.H. Acoustic gravity modes and large scale traveling ionospheric disturbances of a realistic, dissipative atmosphere. J. Geophys. Res. 1973, 78, 2278–2301. [Google Scholar] [CrossRef]
- Vergoz, J.; Hupe, P.; Listowski, C.; Le Pichon, A.; Garcés, M.A.; Marchetti, E.; Labazuy, P.; Ceranna, L.; Pilger, C.; Gaebler, P.; et al. IMS observations of infrasound and acoustic gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth Planet. Sci. Lett. 2022, 591, 117639. [Google Scholar] [CrossRef]
- Astafyeva, E.; Maletckii, B.; Mikesell, T.D.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 2022, 49, e2022GL098827. [Google Scholar] [CrossRef]
- Maletckii, B.; Astafyeva, E. Near-real-time analysis of the ionospheric response to the 15 January 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030735. [Google Scholar] [CrossRef]
- Poli, P.; Shapiro, N.M. Rapid characterization of large volcanic eruptions: Measuring the impulse of the Hunga Tonga Ha’apai explosion from teleseismic waves. Geophys. Res. Lett. 2022, 49, e2022GL098123. [Google Scholar] [CrossRef]
- Tarumi, K.; Yoshizawa, K. Eruption sequence of the 2022 Hunga Tonga-Hunga Ha’apai explosion from back-projection of teleseismic P waves. Earth Planet. Sci. Lett. 2023, 602, 117966. [Google Scholar] [CrossRef]
- Tang, L. Ionospheric disturbances of the January 15, 2022, Tonga volcanic eruption observed using the GNSS network in New Zealand. GPS Solut. 2023, 27, 53. [Google Scholar] [CrossRef]
- Ravanelli, M.; Astafyeva, E.; Munaibari, E.; Rolland, L.; Mikesell, T.D. Ocean-ionosphere disturbances due to the 15 January 2022 Hunga-Tonga Hunga-Ha’apai eruption. Geophys. Res. Lett. 2023, 50, e2022GL101465. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, M.; Wang, R.; Yao, Y.; Tang, F.; Chen, H.; Qiu, L. On the Ionospheric Disturbances in New Zealand and Australia Following the Eruption of the Hunga Tonga-Hunga Ha’apai Volcano on 15 January 2022. Space Weather 2023, 21, e2022SW003294. [Google Scholar] [CrossRef]
- Kong, Q.; Li, C.; Shi, K.; Guo, J.; Han, J.; Wang, T.; Bai, Q.; Chen, Y. Global Ionospheric Disturbance Propagation and Vertical Ionospheric Oscillation Triggered by the 2022 Tonga Volcanic Eruption. Atmosphere 2022, 13, 1697. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Yuan, H. The influence of background winds and attenuation on the propagation of atmospheric gravity waves. J. Atmos. Solar-Terr. Phys. 2003, 65, 857–869. [Google Scholar] [CrossRef]
- Hunsucker, R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys. 1982, 20, 293–315. [Google Scholar] [CrossRef]
- Thome, G.D. Long-period waves generated in the polar ionosphere during the onset of magnetic storms. J. Geophys. Res. 1968, 73, 6319–6336. [Google Scholar] [CrossRef]
D (km) | Tt (UT) | Ta (UT) | ||
---|---|---|---|---|
#1 | #2 | |||
Shock Wave 1 | 1700 | 04:58:40 | 05:02:23 | 04:58:30 |
2300 | 05:12:00 | 05:15:43 | 05:12:00 | |
2600 | 05:18:40 | 05:22:23 | 05:19:30 | |
Shock Wave 2 | 2300 | 05:46:05 | 05:49:48 | 05:50:00 |
2600 | 05:57:11 | 06:00:54 | 05:59:30 | |
2900 | 06:08:18 | 06:12:01 | 06:10:30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ding, F.; Xiong, B.; Chen, G.; Mao, T.; Song, Q.; Yu, C. Multi-Wave Structures of Traveling Ionospheric Disturbances Associated with the 2022 Tonga Volcanic Eruptions in the New Zealand and Australia Regions. Remote Sens. 2024, 16, 2668. https://doi.org/10.3390/rs16142668
Li X, Ding F, Xiong B, Chen G, Mao T, Song Q, Yu C. Multi-Wave Structures of Traveling Ionospheric Disturbances Associated with the 2022 Tonga Volcanic Eruptions in the New Zealand and Australia Regions. Remote Sensing. 2024; 16(14):2668. https://doi.org/10.3390/rs16142668
Chicago/Turabian StyleLi, Xiaolin, Feng Ding, Bo Xiong, Ge Chen, Tian Mao, Qian Song, and Changhao Yu. 2024. "Multi-Wave Structures of Traveling Ionospheric Disturbances Associated with the 2022 Tonga Volcanic Eruptions in the New Zealand and Australia Regions" Remote Sensing 16, no. 14: 2668. https://doi.org/10.3390/rs16142668
APA StyleLi, X., Ding, F., Xiong, B., Chen, G., Mao, T., Song, Q., & Yu, C. (2024). Multi-Wave Structures of Traveling Ionospheric Disturbances Associated with the 2022 Tonga Volcanic Eruptions in the New Zealand and Australia Regions. Remote Sensing, 16(14), 2668. https://doi.org/10.3390/rs16142668