Reconstruction of Baltic Gridded Sea Levels from Tide Gauge and Altimetry Observations Using Spatiotemporal Statistics from Reanalysis
Abstract
:1. Introduction
1.1. Sea Level Variability in the Baltic Sea
1.2. Overview of Sea Level Reconstruction
1.3. Aims and Study Design
2. Data and Methods
2.1. Source Data from the Copernicus Marine Service
2.1.1. Reanalysis 1993–2021
2.1.2. Tide Gauges
2.1.3. L3 Altimetry
2.2. Preparation of the Data
2.2.1. Selecting the Reference Levels
2.2.2. Selecting the Weekly Interval
2.2.3. Averaging and Filtering of the Data
- Weekly mean time series at model grid points corresponding to coastal tide gauge stations (Figure 1).
- Extracts of weekly mean sea levels at L3 altimetry grid points.
2.3. EOF Reconstruction Framework
2.4. Performed Sea Level Reconstruction Experiments
3. Results
3.1. Calculated EOF Modes of Sea Level
3.2. Comparison of Reconstructed and Observed Sea Levels
3.3. Reconstruction of Coastal Sea Levels in Unsampled Locations
3.4. Changes in Sea Volume
4. Discussion
4.1. Reconstruction Skill
4.2. Reference Level Problem for Flow Calculation
4.3. Applicability of EOF Reconstruction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meier, H.M.; Dieterich, C.; Gröger, M.; Dutheil, C.; Börgel, F.; Safonova, K.; Christensen, O.B.; Kjellström, E. Oceanographic regional climate projections for the Baltic Sea until 2100. Earth Syst. Dyn. 2022, 13, 159–199. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E.; Soomere, T.; Madsen, K.S.; Johansson, M.; Suursaar, Ü. Recent change—Sea level and wind waves. In Second Assessment of Climate Change for the Baltic Sea Basin; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 155–185. [Google Scholar]
- Weisse, R.; Dailidienė, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- Samuelsson, M.; Stigebrandt, A. Main characteristics of the long-term sea level variability in the Baltic Sea. Tellus A 1996, 48, 672–683. [Google Scholar] [CrossRef]
- Ekman, M. Climate changes detected through the world’s longest sea level series. Glob. Planet. Chang. 1999, 21, 215–224. [Google Scholar] [CrossRef]
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv. Space Res. 2018, 62, 1639–1653. [Google Scholar] [CrossRef]
- Hansen, W. Theorie zur Errechnung des Wasserstandes und der Strömungen in Randmeeren nebst Anwendungen 1. Tellus 1956, 8, 287–300. [Google Scholar] [CrossRef]
- Meier, H.M.; Broman, B.; Kjellström, E. Simulated sea level in past and future climates of the Baltic Sea. Clim. Res. 2004, 27, 59–75. [Google Scholar] [CrossRef]
- Novotny, K.; Liebsch, G.; Lehmann, A.; Dietrich, R. Variability of sea surface heights in the Baltic Sea: An intercomparison of observations and model simulations. Mar. Geod. 2006, 29, 113–134. [Google Scholar] [CrossRef]
- Steffen, H.; Wu, P. Glacial isostatic adjustment in Fennoscandia—A review of data and modeling. J. Geodyn. 2011, 52, 169–204. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Matthews, A.P.; Spada, G. Trends and acceleration in global and regional sea levels since 1807. Glob. Planet. Chang. 2014, 113, 11–22. [Google Scholar] [CrossRef]
- Passaro, M.; Müller, F.L.; Oelsmann, J.; Rautiainen, L.; Dettmering, D.; Hart-Davis, M.G.; Abulaitijiang, A.; Andersen, O.B.; Høyer, J.L.; Madsen, K.S.; et al. Absolute Baltic Sea level trends in the satellite altimetry era: A revisit. Front. Mar. Sci. 2021, 8, 647607. [Google Scholar] [CrossRef]
- Johansson, M.; Boman, H.; Kahma, K.K.; Launiainen, J. Trends in sea level variability in the Baltic Sea. Boreal Environ. Res. 2001, 6, 159–180. [Google Scholar]
- Suursaar, Ü.; Sooäär, J. Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A Dyn. Meteorol. Oceanogr. 2007, 59, 249–260. [Google Scholar] [CrossRef]
- Kapsi, I.; Kall, T.; Liibusk, A. Sea Level Rise and Future Projections in the Baltic Sea. J. Mar. Sci. Eng. 2023, 11, 1514. [Google Scholar] [CrossRef]
- Dailidienė, I.; Davulienė, L.; Tilickis, B.; Stankevičius, A.; Myrberg, K. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environ. Res. 2006, 11, 109–121. [Google Scholar]
- Karabil, S.; Zorita, E.; Hünicke, B. Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea. Earth Syst. Dyn. 2018, 9, 69–90. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E. Trends in the amplitude of Baltic Sea level annual cycle. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 154–164. [Google Scholar] [CrossRef]
- Svansson, A. Exchange of water and salt in the Baltic and adjacent seas. Oceanol. Acta 1980, 3, 431–440. [Google Scholar]
- Rutgersson, A.; Kjellström, E.; Haapala, J.; Stendel, M.; Danilovich, I.; Drews, M.; Jylhä, K.; Kujala, P.; Larsén, X.G.; Halsnæs, K.; et al. Natural hazards and extreme events in the Baltic Sea region. Earth Syst. Dyn. 2022, 13, 251–301. [Google Scholar] [CrossRef]
- Metzner, M.; Gade, M.; Hennings, I.; Rabinovich, A.B. The observation of seiches in the Baltic Sea using a multi data set of water levels. J. Mar. Syst. 2000, 24, 67–84. [Google Scholar] [CrossRef]
- Andrée, E.; Su, J.; Dahl Larsen, M.A.; Drews, M.; Stendel, M.; and Skovgaard Madsen, K. The role of preconditioning for extreme storm surges in the western Baltic Sea. Nat. Hazards Earth Syst. Sci. 2023, 23, 1817–1834. [Google Scholar] [CrossRef]
- Post, P.; Kõuts, T. Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea. Oceanologia 2014, 56, 241–258. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Sepp, M.; Post, P.; Mäll, M. An inventory of historic storms and cyclone tracks that have caused met-ocean and coastal risks in the eastern Baltic Sea. J. Coast. Res. 2018, 85, 531–535. [Google Scholar] [CrossRef]
- Soomere, T.; Pindsoo, K.; Kudryavtseva, N.; Eelsalu, M. Variability of distributions of wave set-up heights along a shoreline with complicated geometry. Ocean Sci. 2020, 16, 1047–1065. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Livezey, R.E.; Stokes, D.C. Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Clim. 1996, 9, 1403–1420. [Google Scholar] [CrossRef]
- Chambers, D.P.; Mehlhaff, C.A.; Urban, T.J.; Fujii, D.; Nerem, R.S. Low-frequency variations in global mean sea level: 1950–2000. J. Geophys. Res. Ocean. 2002, 107, 1–10. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J.; Coleman, R.; Lambeck, K.; Mitrovica, J.X. Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Clim. 2004, 17, 2609–2625. [Google Scholar] [CrossRef]
- Bergé-Nguyen, M.; Cazenave, A.; Lombard, A.; Llovel, W.; Viarre, J.; Cretaux, J.F. Reconstruction of past decades sea level using thermosteric sea level, tide gauge, satellite altimetry and ocean reanalysis data. Glob. Planet. Chang. 2008, 62, 1–13. [Google Scholar] [CrossRef]
- Ray, R.D.; Douglas, B.C. Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr. 2011, 91, 496–515. [Google Scholar] [CrossRef]
- Meyssignac, B.; Becker, M.; Llovel, W.; Cazenave, A. An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv. Geophys. 2012, 33, 945–972. [Google Scholar] [CrossRef]
- Mu, D.; Yan, H.; Feng, W. Assessment of sea level variability derived by EOF reconstruction. Geophys. J. Int. 2018, 214, 79–87. [Google Scholar] [CrossRef]
- Strassburg, M.W.; Hamlington, B.D.; Leben, R.R.; Kim, K.Y. A comparative study of sea level reconstruction techniques using 20 years of satellite altimetry data. J. Geophys. Res. Ocean. 2014, 119, 4068–4082. [Google Scholar] [CrossRef]
- Sanchez-Franks, A.; Frajka-Williams, E.; Moat, B.I.; Smeed, D.A. A dynamically based method for estimating the Atlantic meridional overturning circulation at 26° N from satellite altimetry. Ocean Sci. 2021, 17, 1321–1340. [Google Scholar] [CrossRef]
- Xu, Q.; Cheng, Y.; Plag, H.P.; Zhang, B. Investigation of sea level variability in the Baltic Sea from tide gauge, satellite altimeter data, and model reanalysis. Int. J. Remote Sens. 2015, 36, 2548–2568. [Google Scholar] [CrossRef]
- Madsen, K.S.; Høyer, J.L.; Suursaar, Ü.; She, J.; Knudsen, P. Sea level trends and variability of the Baltic Sea from 2D statistical reconstruction and altimetry. Front. Earth Sci. 2019, 7, 243. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Li, X. Spatio-temporal variability of annual sea level cycle in the Baltic Sea. Remote Sens. 2018, 10, 528. [Google Scholar] [CrossRef]
- Ringgaard, I.; Korabel, V.; Spruch, L.; Lindenthal, A.; Huess, V. Baltic Sea Physics Reanalysis. BALTICSEA_MULTIYEAR_PHY_003_011. Available online: https://data.marine.copernicus.eu/product/BALTICSEA_MULTIYEAR_PHY_003_011/description (accessed on 13 October 2023).
- Elken, J.; Zujev, M.; She, J.; Lagemaa, P. Reconstruction of large-scale sea surface temperature and salinity fields using sub-regional EOF patterns from models. Front. Earth Sci. 2019, 7, 232. [Google Scholar] [CrossRef]
- Zujev, M.; Elken, J.; Lagemaa, P. Data assimilation of sea surface temperature and salinity using basin-scale reconstruction from empirical orthogonal functions: A feasibility study in the northeastern Baltic Sea. Ocean Sci. 2021, 17, 91–109. [Google Scholar] [CrossRef]
- Nerger, L.; Tang, Q.; Mu, L. Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: Example of AWI-CM (AWI-CM-PDAF 1.0). Geosci. Model Dev. 2020, 13, 4305–4321. [Google Scholar] [CrossRef]
- In Situ TAC Partners. Baltic Sea- In Situ Near Real Time Observations. INSITU_BAL_PHYBGCWAV_DISCRETE_MYNRT_013_032. Available online: https://data.marine.copernicus.eu/product/INSITU_BAL_PHYBGCWAV_DISCRETE_MYNRT_013_032/description (accessed on 9 October 2023).
- Pujol, M.I. European Seas Along Track L 3 Sea Surface Heights Reprocessed 1993 Ongoing Tailored For Data Assimilation. SEALEVEL_EUR_PHY_L3_MY_008_061. Available online: https://data.marine.copernicus.eu/product/SEALEVEL_EUR_PHY_L3_MY_008_061/description (accessed on 16 November 2023).
- Pujol, M.I.; Dupuy, S.; Vergara, O.; Sánchez Román, A.; Faugère, Y.; Prandi, P.; Dabat, M.L.; Dagneaux, Q.; Lievin, M.; Cadier, E.; et al. Refining the Resolution of DUACS Along-Track Level-3 Sea Level Altimetry Products. Remote Sens. 2023, 15, 793. [Google Scholar] [CrossRef]
- Liibusk, A.; Kall, T.; Rikka, S.; Uiboupin, R.; Suursaar, Ü.; Tseng, K.H. Validation of Copernicus Sea Level Altimetry Products in the Baltic Sea and Estonian Lakes. Remote Sens. 2020, 12, 4062. [Google Scholar] [CrossRef]
- Jahanmard, V.; Hordoir, R.; Delpeche-Ellmann, N.; Ellmann, A. Quantification of hydrodynamic model sea level bias utilizing deep learning and synergistic integration of data sources. Ocean Model. 2023, 186, 102286. [Google Scholar] [CrossRef]
- Afrasteh, Y.; Slobbe, D.C.; Sacher, M.; Verlaan, M.; Jahanmard, V.; Klees, R.; Guarneri, H.; Keyzer, L.; Pietrzak, J.; Snellen, M.; et al. Realizing the European Vertical Reference System using model-based hydrodynamic leveling data. J. Geod. 2023, 97, 86. [Google Scholar] [CrossRef]
- Mostafavi, M.; Delpeche-Ellmann, N.; Ellmann, A.; Jahanmard, V. Determination of accurate dynamic topography for the Baltic Sea using satellite altimetry and a marine geoid model. Remote Sens. 2023, 15, 2189. [Google Scholar] [CrossRef]
- Raudsepp, U.; Toompuu, A.; Kõuts, T. A stochastic model for the sea level in the Estonian coastal area. J. Mar. Syst. 1999, 22, 69–87. [Google Scholar] [CrossRef]
- Soomere, T.; Eelsalu, M.; Kurkin, A.; Rybin, A. Separation of the Baltic Sea water level into daily and multi-weekly components. Cont. Shelf Res. 2015, 103, 23–32. [Google Scholar] [CrossRef]
- Lagemaa, P.; Elken, J.; Kõuts, T. Operational sea level forecasting in Estonia. Est. J. Eng. 2011, 17, 301–331. [Google Scholar] [CrossRef]
- Soomere, T.; Pindsoo, K. Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea. Cont. Shelf Res. 2016, 115, 53–64. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef]
- Omstedt, A.; Elken, J.; Lehmann, A.; Piechura, J. Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog. Oceanogr. 2004, 63, 1–28. [Google Scholar] [CrossRef]
- Stramska, M.; Kowalewska-Kalkowska, H.; Świrgoń, M. Seasonal variability in the Baltic Sea level. Oceanologia 2013, 55, 787–807. [Google Scholar] [CrossRef]
- Kärnä, T.; Ljungemyr, P.; Falahat, S.; Ringgaard, I.; Axell, L.; Korabel, V.; Murawski, J.; Maljutenko, I.; Lindenthal, A.; Jandt-Scheelke, S.; et al. Nemo-Nordic 2.0: Operational marine forecast model for the Baltic Sea. Geosci. Model Dev. 2021, 14, 5731–5749. [Google Scholar] [CrossRef]
- Hordoir, R.; Axell, L.; Höglund, A.; Dieterich, C.; Fransner, F.; Gröger, M.; Liu, Y.; Pemberton, P.; Schimanke, S.; Andersson, H.; et al. Nemo-Nordic 1.0: A NEMO-based ocean model for the Baltic and North seas—Research and operational applications. Geosci. Model Dev. 2019, 12, 363–386. [Google Scholar] [CrossRef]
- Bergström, S.; Carlsson, B. River runoff to the Baltic Sea 1950–1990. Ambio 1994, 23, 280–287. [Google Scholar]
- Toulany, B.; Garrett, C. Geostrophic control of fluctuating barotropic flow through straits. J. Phys. Oceanogr. 1984, 14, 649–655. [Google Scholar] [CrossRef]
- Burchard, H.; Bolding, K.; Feistel, R.; Gräwe, U.; Klingbeil, K.; MacCready, P.; Mohrholz, V.; Umlauf, L.; van der Lee, E.M. The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea. Prog. Oceanogr. 2018, 165, 268–286. [Google Scholar] [CrossRef]
Variable Name | Explanation |
---|---|
sla_unfiltered | raw sea level anomaly measurement including noises; corrected for the dac, lwe, ocean_tide and internal_tide |
sla_filtered | sea level anomaly low pass filtered for noise reduction; corrected for the dac, lwe, ocean_tide and internal_tide |
mdt | mean dynamic topography (long-term mean of sea surface height 1993–2012 above geoid) that is constant for grid point during time; it is used to compute the absolute dynamic topography adt = sla + mdt |
dac | dynamic atmospheric correction for the removal of high frequency variability induced by the atmospheric forcing and aliased by the altimetric measurements; the sla is already corrected for the dac |
lwe | long wavelength error due to changes in satellite orbits; the sla is already corrected for the lwe; it is stored with opposite sign compared to the other corrections so if the user wants to uncorrect it or to use another correction instead, he must subtract it from the sla in the product |
ocean_tide | ocean barotropic tide correction (including S1S2 signal) based on tidal model; the sla is already corrected for the ocean_tide |
internal_tide | internal tide correction: coherent part of the baroclinic tide (phase-locked with barotropic tide frequency); the sla is already corrected for the internal_tide |
Name | Tide Gauges | Altimetry | Description |
---|---|---|---|
rec1 | Y | N | Input from tide gauge data only; altimetry comparison with rec4. |
rec2 | Y | Y | Input from tide gauge and altimetry sla_filtered; sea level anomalies accounted for on top of model-based dynamic topography. |
rec3 | Y | Y | Input from tide gauge and altimetry ADT = sla_filtered + mdt; sea level anomalies accounted for on top of altimetry-based dynamic topography. |
rec4 | Y | Y | Input from tide gauge and altimetry ADT_c0 = sla_filtered + dac + ocean_tide + iw − lwe + mdt; same as rec3, but corrections to sla_filtered removed. |
rec5 | N | Y | Same as rec3, but tide gauge data not included. |
rec1 | rec2 | rec3 | rec4 | rec5 | |
---|---|---|---|---|---|
Tide gauges at coastal stations | |||||
Mean, tide gauges (m) | 0.085 | ||||
Mean, reconstruction (m) | 0.089 | 0.106 | 0.101 | 0.095 | 0.117 |
STD, tide gauges (m) | 0.182 | ||||
STD, reconstruction (m) | 0.198 | 0.176 | 0.176 | 0.190 | 0.163 |
cRMSD, reconstruction to tide gauges (m) | 0.034 | 0.046 | 0.046 | 0.040 | 0.106 |
R2 coefficient of determination, reconstruction to tide gauges | 0.952 | 0.935 | 0.935 | 0.948 | 0.659 |
Altimetry points | |||||
Mean, altimetry (m) | 0.101 | 0.143 | 0.117 | 0.101 | 0.117 |
Mean, reconstruction (m) | 0.103 | 0.126 | 0.112 | 0.103 | 0.117 |
STD, altimetry (m) | 0.206 | 0.168 | 0.167 | 0.206 | 0.167 |
STD, reconstruction (m) | 0.201 | 0.175 | 0.174 | 0.193 | 0.162 |
cRMSD, reconstruction to altimetry (m) | 0.112 | 0.060 | 0.066 | 0.086 | 0.094 |
R2 coefficient of determination, reconstruction to altimetry | 0.723 | 0.881 | 0.855 | 0.827 | 0.930 |
Source | Compared Variables | Period | Time Interval | cRMSD (m) | R2 |
---|---|---|---|---|---|
Madsen et al., 2019 [36] | Reconstruction—tide gauges | 1900–2014 | Month | 0.04 | 0.92 |
Madsen et al., 2019 [36] | Reconstruction—altimetry in Baltic Proper | 1900–2014 | Month | 0.06 | 0.81 |
Present study | Reconstruction—tide gauges | 1993–2021 | Week | 0.05 | 0.93 |
Present study | Reconstruction—altimetry | 1993–2021 | Week | 0.10 | 0.82 |
Copernicus Reanalysis, 2023 [38] | Reanalysis—tide gauges | 1993–2018 | Day | 0.10 | 0.77 |
Kärna et al., 2021 [57] | Operational forecast—tide gauges | 2014–2016 | Hour | 0.10 | 0.90 |
Hordoir et al., 2019 [58] | Research model—tide gauges | 2011–2012 | Hour | 0.06 | 0.90 |
Jahanmard et al., 2022 [50] | Bias-corrected research model—tide gauges | 2017–2020 | Hour | 0.03 | 0.90 |
Mostafavi et al., 2023 [52] | Bias-corrected research model—altimetry | 2017–2019 | Hour | 0.09 | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elken, J.; Barzandeh, A.; Maljutenko, I.; Rikka, S. Reconstruction of Baltic Gridded Sea Levels from Tide Gauge and Altimetry Observations Using Spatiotemporal Statistics from Reanalysis. Remote Sens. 2024, 16, 2702. https://doi.org/10.3390/rs16152702
Elken J, Barzandeh A, Maljutenko I, Rikka S. Reconstruction of Baltic Gridded Sea Levels from Tide Gauge and Altimetry Observations Using Spatiotemporal Statistics from Reanalysis. Remote Sensing. 2024; 16(15):2702. https://doi.org/10.3390/rs16152702
Chicago/Turabian StyleElken, Jüri, Amirhossein Barzandeh, Ilja Maljutenko, and Sander Rikka. 2024. "Reconstruction of Baltic Gridded Sea Levels from Tide Gauge and Altimetry Observations Using Spatiotemporal Statistics from Reanalysis" Remote Sensing 16, no. 15: 2702. https://doi.org/10.3390/rs16152702
APA StyleElken, J., Barzandeh, A., Maljutenko, I., & Rikka, S. (2024). Reconstruction of Baltic Gridded Sea Levels from Tide Gauge and Altimetry Observations Using Spatiotemporal Statistics from Reanalysis. Remote Sensing, 16(15), 2702. https://doi.org/10.3390/rs16152702