Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Reconstruction and Prediction of Water Temperature with the Application of the Air2water Model
2.3.2. Reconstruction of Water Temperature with the Application of Satellite Data
2.3.3. Air Temperature Prediction
2.3.4. Analysis of Trends of Changes in Water Temperature in Lake Miedwie
3. Results
3.1. Historical Reconstruction of Water Temperature
3.2. Future Water Temperature
3.3. Application of Satellite Images in Water Temperature Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffe, S.; Qian, S.S.; Mayer, C.M.; Kocovsky, P.M.; Gouveia, A. Assessing the probability of grass carp (Ctenopharyngodon idella) spawning in the Sandusky River using discharge and water temperature. J. Great Lakes Res. 2024, 50, 102303. [Google Scholar] [CrossRef]
- Yan, Z.; Feng, C.; Xu, Y.; Wang, J.; Huang, N.; Jin, X.; Wu, F.; Bai, Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. Environ. Sci. Ecotechnol. 2024, 21, 100401. [Google Scholar] [CrossRef] [PubMed]
- Haddout, S.; Priya, K.L.; Casila, J.C.C.; Hoguane, A.M.; Ljubenkov, I. Modelling of depth profiles of the water temperature in the Lake Sidi Ali (Morocco). Int. J. River Basin Manag. 2024, 22, 23–30. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Luo, Y.; Yang, Y.; Zhao, L.; Zhou, X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality—A case study of Dianchi Lake. Sci. Total Environ. 2018, 624, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Issak, D.J.; Horan, D.L.; Wollrab, S.P. Air temperature data source affects inference from statistical stream temperature models in mountainous terrain. J. Hydrol. X 2024, 22, 100172. [Google Scholar] [CrossRef]
- Twardosz, R.; Walanus, A.; Guzik, I. Warming in Europe: Recent Trends in Annual and Seasonal temperatures. Pure Appl. Geophys. 2021, 178, 4021–4032. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Kozłowski, M. The increasing of maximum lake water temperature in lowland lakes of Central Europe: Case study of the Polish Lakeland. Ann. De Limnol. -Int. J. Limnol. 2019, 55, 11. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Zhu, S.; Ladwig, R.; Carrea, L.; Oliver, S.; Piotrowski, A.P.; Ptak, M.; Shinohara, R.; Sojka, M.; Woolway, R.I.; et al. Lake water temperature modeling in an Era of climate change: Data sources, models, and future prospects. Rev. Geophys. 2024, 62, e2023RG000816. [Google Scholar] [CrossRef]
- Duda, L.; Duklas, K. Retencja Jeziorna Jeziora Miedwie w Latach 1902/03-1939/40; Szczecińskie Towarzystwo Naukowe; Wydział Nauk Matematycznych i Technicznych; Państwowe Wydawnictwo Naukowe Oddział w Poznaniu: Szczecin, Poland, 1970; p. 24. [Google Scholar]
- Wloczyk, C.; Richter, R.; Borg, E.; Neubert, W. Sea and lake surface temperature retrieval from Landsat thermal data in Northern Germany. Int. J. Remote Sens. 2006, 27, 2489–2502. [Google Scholar] [CrossRef]
- Heddam, S.; Ptak, M.; Zhu, S. Modelling of daily lake surface water temperature from air temperature: Extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. J. Hydrol. 2020, 588, 125130. [Google Scholar] [CrossRef]
- Dyba, K.; Ermida, S.; Ptak, M.; Piekarczyk, J.; Sojka, M. Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sens. 2022, 14, 3839. [Google Scholar] [CrossRef]
- Choiński, A. Katalog Jezior Polski; Wydawnictwo Naukowe UAM: Poznań, Poland, 2006. [Google Scholar]
- Ptak, M.; Choiński, A.; Strzelczak, A.; Targosz, A. Disappearance of Lake Jelenino since the end of the XVIII century as an effect of anthropogenic transformations of the natural environment. Pol. J. Environ. Stud. 2013, 22, 191–196. [Google Scholar]
- Pasławski, Z. Zarys limnologii fizycznej jeziora Miedwie. Prace PIHM 1969, 96, 57–72. [Google Scholar]
- Woś, A. Klimat Polski w Drugiej Połowie XX Wieku; Wydawnictwo Naukowe UAM: Poznań, Poland, 2010. [Google Scholar]
- Piccolroaz, S.; Toffolon, M.; Majone, B. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol. Earth Syst. Sci. 2013, 17, 3323–3338. [Google Scholar] [CrossRef]
- Zhu, S.; Ptak, M.; Yaseen, Z.M.; Dai, J.; Sivakumar, B. Forecasting surface water temperature in lakes: A comparison of approaches. J. Hydrol. 2020, 585, 124809. [Google Scholar] [CrossRef]
- Zhu, S.; Piotrowski, A.P.; Ptak, M.; Napiorkowski, J.J.; Dai, J.; Ji, Q. How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures? J. Hydrol. 2021, 597, 126219. [Google Scholar] [CrossRef]
- Wang, W.; Shi, K.; Wang, X.; Zhang, Y.; Qin, B.; Zhang, Y.; Woolway, R.I. The impact of extreme heat on lake warming in China. Nat. Commun. 2024, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Toffolon, M.; Piccolroaz, S.; Majone, B.; Soja, A.M.; Peeters, F.; Schmid, M.; Wüest, A. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol. Oceanogr. 2014, 59, 2185–2202. [Google Scholar] [CrossRef]
- Zhu, S.; Ptak, M.; Sojka, M.; Piotrowski, A.P.; Luo, W. A simple approach to estimate lake surface water temperatures in Polish lowland lakes. J. Hydrol. Reg. Stud. 2023, 48, 101468. [Google Scholar] [CrossRef]
- Landsat Collection 2 Level-1 Product Courtesy of the U.S. Geological Survey. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-4-5-thematic-mapper-collection-2 (accessed on 27 June 2024).
- Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide Version 5.0; United States Geological Survey: Asheville, NC, USA, 2023; pp. 1–43.
- Landsat 4-7 Collection 2 (C2) Level 2 Science Product (L2SP) Guide Version 4.0; United States Geological Survey: Asheville, NC, USA, 2021; pp. 1–44.
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine open-source code for Land Surface Temperature estimation from the Landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arneth, A.; Arsouze, T.; Bergmann, T.; Bernadello, R.; Bousetta, S.; Caron, L.P.; et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Semmler, T.; Danilov, S.; Gierz, P.; Goessling, H.F.; Hegewald, J.; Hinrichs, C.; Koldunov, N.; Khosravi, N.; Mu, L.; Rackow, T.; et al. Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002009. [Google Scholar] [CrossRef]
- Xin, X.-G.; Wu, T.-W.; Zhang, J.; Zhang, F.; Li, W.-P.; Zhang, Y.-W.; Lu, Y.-X.; Fang, Y.-J.; Jie, W.-H.; Zhang, L.; et al. Introduction of BCC models and its participation in CMIP6. Adv. Clim. Change Res. 2019, 15, 533. [Google Scholar]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Lauritzen, P.H.; Nair, R.D.; Herrington, A.; Callaghan, P.; Goldhaber, S.; Dennis, J.; Bacmeister, J.; Eaton, B.; Zarzycki, C.; Taylor, M.A.; et al. NCAR release of CAM-SE in CESM2.0: A reformulation of the spectral element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy. J. Adv. Model. Earth Syst. 2018, 10, 1537–1570. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 14, 382–417. [Google Scholar]
- Cover, T.M.; Hart, P.E. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Hawkins, E.; Osborne, T.M.; Ho, C.K.; Challinor, A.J. Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteorol. 2013, 15, 19–31. [Google Scholar] [CrossRef]
- Ho, C.K.; Stephenson, D.B.; Collins, M.; Ferro, C.A.; Brown, S.J. Calibration strategies: A source of additional uncertainty in cli-mate change projections. Bull. Am. Meteorol. Soc. 2012, 93, 21–26. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, 3rd ed.; Charles Griffin Ltd.: Cheshire, UK, 1968. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitorin; Van Nos-trand Reinhold Co.: New York, NY, USA, 1987. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the changepoint problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. 31 October 2022. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests, Version 1.6. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 27 June 2024).
- Pohlert, T. 10 October 2023. Non-Parametric Trend Tests and Change-Point Detection, Version 1.1.6. Available online: https://cran.r-project.org/web/packages/trend/trend.pdf (accessed on 27 June 2024).
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Obrębska-Starkel, B.; Starkel, L. The greenhouse effect and global environmental changes. Zeszyty IGiPZ PAN. Inst. Geogr. I Przestrz. Zagospod. (IGiPZ) PAN 1991, 4, 1–72. [Google Scholar]
- Huang, L.; Wang, J.; Zhu, L.; Ju, J.; Daut, G. The Warming of Large Lakes on the Tibetan Plateau: Evidence from a Lake Model Simulation of Nam Co, China, During 1979–2012. J. Geophys. Res. Atmos. 2017, 122, 13–095. [Google Scholar] [CrossRef]
- De Santis, D.; Del Frate, F.; Schiavon, G. Analysis of Climate Change Effects on Surface Temperature in Central-Italy Lakes Using Satellite Data Time-Series. Remote Sens. 2022, 14, 117. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland–Lake Śniardwy. J. Hydrol. Hydrodyn. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M. Different reactions to climate change as observed in selected elements of hydrological regime of the deepest lake on the Central European Plain (Lake Hańcza). Hydrol. Sci. J. 2021, 66, 1083–1095. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Qin, J.; Ye, Q.; Dai, Y.; Guo, R. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos. 2014, 119, 8552–8567. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, L.; Xie, H.; Liu, B.; Li, H.; Cui, Y.; Ma, Y.; Hong, Y. Lake Surface Water Temperature Change Over the Tibetan Plateau From 2001 to 2015: A Sensitive Indicator of the Warming Climate. Geophys. Res. Lett. 2018, 45, 11177–11186. [Google Scholar] [CrossRef]
- Liu, B.; Wan, W.; Xie, H.; Li, H.; Zhu, S.; Zhang, G.; Wen, L.; Hong, Y. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015. Sci. Data 2019, 6, 48. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Virdis, S.G.P.; Kongwarakom, S.; Juneng, L.; Padedda, B.M.; Shrestha, S. Historical and projected response of Southeast Asian lakes surface water temperature to warming climate. Environ. Res. 2024, 247, 118412. [Google Scholar] [CrossRef]
- Michel, A.; Råman Vinnå, C.L.M.; Bouffard, D.; Epting, J.; Huwald, H.; Schaefli, B.; Schmid, M.; Wüest, A.J. Evolution of Stream and Lake Water Temperature under Climate Change; Hydro-CH2018 Project; FOEN: Bern, Switzerland, 2021. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Zhu, S.; Ptak, M.; Sojka, M.; Du, X. Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics. J. Hydrol. Reg. Stud. 2021, 34, 100780. [Google Scholar] [CrossRef]
- Chen, R.; Wang, B.; Qian, L.; Luo, Y.; Ma, M. Seasonal Variation of Water Quality of Taiping Lake in Eastern China. J. Risk Anal. Crisis Response 2024, 14, 70–79. [Google Scholar] [CrossRef]
- Stepanowska, K.; Biernaczyk, M.; Machula, S.; Kubiak, J. Struktura po3owów rybackich na tle czynników abiotycznych wód w jeziorze Miedwie. Komunikaty Rybackie 2014, 5, 1–4. [Google Scholar]
- Wilmański, K. Rozwój technologii oczyszczania wody z użyciem pylistego węgla aktywnego w Polsce. Inżynieria I Ochr. Sr. 2016, 19, 265–275. [Google Scholar]
- Bhatti, M.; Singh, A.; McBean, E.; Vijayakumar, S.; Fitzgerald, A.; Siwierski, J.; Murison, L. Climate Change Impacts on Water Temperatures in Urban Lakes: Implications for the Growth of Blue Green Algae in Fairy Lake. Water 2024, 16, 587. [Google Scholar] [CrossRef]
- Yaghouti, M.; Heidarzadeh, N.; Nakhaei, N.; Ulloa, H.N. The impacts of climate change on thermal stratification and dissolved oxygen in the temperate, dimictic Mississippi Lake, Ontario. Ecol. Inform. 2023, 75, 10208. [Google Scholar] [CrossRef]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. 2016, 23, 639–650. [Google Scholar] [CrossRef]
Satellite | Instrument | Operation Period | Number of Acquired Data Points | Number of Used Data Points (April–October) |
---|---|---|---|---|
Landsat 4 | Thematic Mapper (TM) | August 1982 to December 1993 | 8 | 8 |
Landsat 5 | Thematic Mapper (TM) | March 1984 to May 2012 | 343 | 280 |
Landsat 7 | Enhanced Thematic Mapper Plus (ETM+) | July 1999 to April 2022 | 323 | 233 |
Landsat 8 | Operational Land Imager (OLI) | April 2013 to present | 195 | 142 |
Landsat 9 | Operational Land Imager 2 (OLI-2) | February 2022 to present | 31 | 19 |
GCM | Institutions |
---|---|
NorESM2-MM | Norwegian Climate Centre (NCC) |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M) |
EC-Earth3 | EC-Earth-Consortium |
AWI-CM-1-1-MR | Alfred Wegener Institut (AWI) |
BCC-CSM2-MR | Beijing Climate Center (BCC) |
MRI-ESM2-0 | Meteorological Research Institute (MRI) |
GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA) |
CESM2-WACCM | National Center for Atmospheric Research (NCAR) |
CMCC-CM2-SR5 | Euro-Mediterranean Centre on Climate Change (CMCC) Foundation |
Model | SSP245 | SSP585 |
---|---|---|
AWI-CM-1-1-MR | 0.11 | 0.12 |
BCC-CSM2-MR | 0.08 | 0.08 |
CESM2-WACCM | 0.12 | 0.11 |
CMCC-CM2-SR5 | 0.09 | 0.10 |
EC-Earth3 | 0.12 | 0.13 |
GFDL-ESM4 | 0.10 | 0.09 |
MPI-ESM1-2-HR | 0.12 | 0.12 |
MRI-ESM2-0 | 0.14 | 0.13 |
NorESM2-MM | 0.12 | 0.12 |
Period | Mann–Kendal and Sen Tests | Pettitt Test | ||||
---|---|---|---|---|---|---|
S | z-Value | p-Value | Sen Slope Value (°C per Decade) | Change Point | p-Value | |
Water temperature | ||||||
1972–2023 | 545 | 4.30 | 0.000 | 0.20 | 1988 | 0.003 |
1994–2023 | 180 | 3.21 | 0.001 | 0.31 | 2014 | 0.004 |
2024–2053 a | 237 | 4.27 | 0.000 | 0.17 | 2036 | 0.006 |
2047–2076 a | 133 | 2.41 | 0.016 | 0.09 | 0.214 | |
2072–2100 a | 150 | 2.74 | 0.006 | 0.08 | 2079 | 0.035 |
2024–2053 b | 278 | 5.02 | 0.000 | 0.30 | 2037 | 0.000 |
2047–2076 b | 317 | 5.68 | 0.000 | 0.35 | 2061 | 0.000 |
2072–2100 b | 344 | 6.15 | 0.000 | 0.42 | 2084 | 0.000 |
Air temperature | ||||||
1972–2023 | 680 | 5.21 | 0.000 | 0.41 | 28 | 0.000 |
1994–2023 | 201 | 3.57 | 0.000 | 0.49 | 20 | 0.007 |
2024–2053 a | 225 | 4.00 | 0.000 | 0.28 | 11 | 0.007 |
2047–2076 a | 124 | 2.19 | 0.028 | 0.14 | 0.195 | |
2072–2100 a | 155 | 2.75 | 0.006 | 0.14 | 0.077 | |
2024–2053 b | 281 | 5.00 | 0.000 | 0.49 | 11 | 0.000 |
2047–2076 b | 298 | 5.30 | 0.000 | 0.55 | 14 | 0.000 |
2072–2100 b | 343 | 6.10 | 0.000 | 0.67 | 13 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptak, M.; Zhu, S.; Amnuaylojaroen, T.; Li, H.; Szyga-Pluta, K.; Jiang, S.; Wang, L.; Sojka, M. Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland). Remote Sens. 2024, 16, 2753. https://doi.org/10.3390/rs16152753
Ptak M, Zhu S, Amnuaylojaroen T, Li H, Szyga-Pluta K, Jiang S, Wang L, Sojka M. Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland). Remote Sensing. 2024; 16(15):2753. https://doi.org/10.3390/rs16152753
Chicago/Turabian StylePtak, Mariusz, Senlin Zhu, Teerachai Amnuaylojaroen, Huan Li, Katarzyna Szyga-Pluta, Sun Jiang, Li Wang, and Mariusz Sojka. 2024. "Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)" Remote Sensing 16, no. 15: 2753. https://doi.org/10.3390/rs16152753
APA StylePtak, M., Zhu, S., Amnuaylojaroen, T., Li, H., Szyga-Pluta, K., Jiang, S., Wang, L., & Sojka, M. (2024). Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland). Remote Sensing, 16(15), 2753. https://doi.org/10.3390/rs16152753