Land-Use and Land-Cover Changes in Cottbus City and Spree-Neisse District, Germany, in the Last Two Decades: A Study Using Remote Sensing Data and Google Earth Engine
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Datasets
3.1.1. Satellite Imagery
3.1.2. Training Inputs
3.2. Methodology
3.2.1. Classification
3.2.2. Accuracy Assessment
3.2.3. Validation
4. Results
4.1. Unsupervised Classification
4.2. Supervised Classification
4.2.1. SmileCart Classifier
4.2.2. SmileRandomForest Classifier
4.3. Data Validation
4.4. Classification Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, F.; Moniruzzaman, M. Environmental change detection through remote sensing technique: A study of Rohingya refugee camp area (Ukhia and Teknaf sub-district), Cox’s Bazar, Bangladesh. Environ. Chall. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Hietel, E.; Waldhardt, R.; Otte, A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landsc. Ecol. 2004, 19, 473–489. [Google Scholar] [CrossRef]
- Stadt Cottbus: From the History of the City of Cottbus. Available online: https://www.cottbus.de/wissenswert/geschichte/ (accessed on 26 July 2023).
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Tanmoy Das: Land Use/Land Cover Change Detection: An Object Oriented Approach, Münster, Germany. 2009. Available online: https://run.unl.pt/handle/10362/2532 (accessed on 31 July 2023).
- Mehedy Hassan, M.; Culver Smith, A.; Walker, K.; Khaledur Rahman, M.; Southworth, J. Rohingya Refugee Crisis and Forest Cover Change in Teknaf, Bangladesh. Remote Sens. 2018, 10, 689. [Google Scholar] [CrossRef]
- Kotaridis, I.; Lazaridou, M. Environmental change detection study in the wider area of lignite mines. Civil Engineering and Architecture. Civ. Eng. Arch. 2018, 6, 103–114. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef]
- Kline, J.D.; Moses, A.; Lettman, G.J.; Azuma, D.L. Modeling forest and range land development in rural locations, with examples from eastern Oregon. Landsc. Urban Plan. 2007, 80, 320–332. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst. Environ. 2008, 127, 251–264. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote. Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D.M. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plann. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Prasad, P.; Loveson, V.J.; Chandra, P.; Kotha, M. Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecol. Inform. 2022, 68, 101522. [Google Scholar] [CrossRef]
- Alshari, E.A.; Gawali, B.W. Development of classification system for LULC using remote sensing and GIS. Glob. Transit. Proc. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A review on change detection method and accuracy assessment for land use land cover. Remote Sens. Appl. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Feng, D.D.; Herman, B.M. Remotely Sensing the Earth’s Atmosphere Using the Global Positioning System (GPS)—The GPS/MET Data Analysis. J. Atmos. Ocean. Technol. 1999, 16, 989–1002. [Google Scholar] [CrossRef]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. Earth Environ. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Floreano, I.X.; de Moraes, L.A.F. Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environ. Monit. Assess. 2021, 193, 239. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote. Sens. Appl. 2016, 4, 219–224. [Google Scholar] [CrossRef]
- Becker, W.R.; Ló, T.B.; Johann, J.A.; Mercante, E. Statistical features for land use and land cover classification in Google Earth Engine. Remote. Sens. Appl. 2021, 21, 100459. [Google Scholar] [CrossRef]
- Lin, L.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Yu, K.; Yang, L.; Liu, J. Monitoring Land Cover Change on a Rapidly Urbanizing Island Using Google Earth Engine. Appl. Sci. 2020, 10, 7336. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Nery, T.; Sadler, R.; Solis-Aulestia, M.; White, B.; Polyakov, M.; Chalak, M. Comparing supervised algorithms in Land Use and Land Cover classification of a Landsat time-series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5165–5168. [Google Scholar] [CrossRef]
- Shiraishi, T.; Motohka, T.; Thapa, R.B.; Watanabe, M.; Shimada, M. Comparative assessment of supervised classifiers for land use-land cover classification in a tropical region using time-series PALSAR mosaic data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 1186–1199. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazemi Garajeh, M.; Lakes, T.; Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. 2023, 66, 665–697. [Google Scholar] [CrossRef]
- Zaidi, S.M.; Akbari, A.; Samah, A.A.; Kong, N.S.; Isabella, J.; Gisen, A. Introduction Landsat-5 Time Series Analysis for Land Use/Land Cover Change Detection Using NDVI and Semi-Supervised Classification Techniques. J. Environ. Stud. 2017, 26, 2833–2840. [Google Scholar] [CrossRef]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. ACM Int. Conf. Proceeding Ser. 2006, 148, 161–168. [Google Scholar] [CrossRef]
- Pierre Pott, L.; Jorge Carneiro Amado, T.; Augusto Schwalbert, R.; Mateus Corassa, G.; Antonio Ciampitti, I. Crop type classification in Southern Brazil: Integrating remote sensing, crop modeling and machine learning. Comput. Electron. Agric. 2022, 201, 107320. [Google Scholar] [CrossRef]
- Kadri, N.; Jebari, S.; Augusseau, X.; Mahdhi, N.; Lestrelin, G.; Berndtsson, R. Analysis of Four Decades of Land Use and Land Cover Change in Semiarid Tunisia Using Google Earth Engine. Remote Sens. 2023, 15, 3257. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Dubertret, F.; Le Tourneau, F.-M.; Villarreal, M.L.; Norman, L.M. Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sens. 2022, 14, 2127. [Google Scholar] [CrossRef]
- Kouassi, C.J.A.; Qian, C.; Khan, D.; Achille, L.S.; Kebin, Z.; Omifolaji, J.K.; Yang, X. Google Earth Engine for Landsat Image Processing and Assessing Lulc Classification in Southwestern Côte D’ivoire. Geod. Cartogr. 2023, 49, 37–50. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.; Bian, J.; Lei, G.; Nan, X. Land cover dataset of the China Central-Asia West-Asia Economic Corridor from 1993 to 2018. Sci. Data 2023, 10, 728. [Google Scholar] [CrossRef]
- Cegielska, K.; Noszczyk, T.; Kukulska, A.; Szylar, M.; Hernik, J.; Dixon-Gough, R.; Jombach, S.; Valánszki, I.; Filepné Kovács, K. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 2018, 78, 1–18. [Google Scholar] [CrossRef]
- Gallardo, M.; Fernández-Portela, J.; Cocero, D.; Vilar, L. Land Use and Land Cover Changes in Depopulated Areas of Mediterranean Europe: A Case Study in Two Inland Provinces of Spain. Land 2023, 12, 1967. [Google Scholar] [CrossRef]
- Gerwin, W.; Raab, T.; Birkhofer, K.; Hinz, C.; Letmathe, P.; Leuchner, M.; Roß-Nickoll, M.; Rüde, T.; Trachte, K.; Wätzold, F.; et al. Perspectives of lignite post-mining landscapes under changing environmental conditions: What can we learn from a comparison between the Rhenish and Lusatian region in Germany? Environ. Sci. Eur. 2023, 35, 36. [Google Scholar] [CrossRef]
- On the Way to the Cottbus Baltic Sea. Available online: https://www.leag.de/de/geschaeftsfelder/bergbau/cottbuser-ostsee/ (accessed on 14 August 2023).
- Hossain, M.; Leminen, S.; Westerlund, M. A systematic review of living lab literature. J. Clean Prod. 2019, 213, 976–988. [Google Scholar] [CrossRef]
- City Administration: Population in Cottbus. Available online: https://www.cottbus.de/aktuelles/statistik/bevoelkerung.html (accessed on 14 August 2023).
- District Administrator: Population in the Spree-Neisse District. Available online: https://www.lkspn.de/buergerservice/statistik/bevoelkerunglandkreis.html (accessed on 14 August 2023).
- Climate Data: Data and Graphs on the Climate and Weather in Cottbus. Available online: https://de.climate-data.org/europa/deutschland/brandenburg/cottbus-6314/ (accessed on 14 August 2023).
- Climate Data: Data and Graphs on the Climate and Weather in Fürstenwalde/Spree. Available online: https://de.climate-data.org/europa/deutschland/brandenburg/fuerstenwalde-spree-22837/ (accessed on 14 August 2023).
- Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Cham, Switzerland, 2022; pp. 1–567. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Cui, Y.; Yang, G.; Zhou, Y.; Zhao, C.; Pan, Y.; Sun, Q.; Gu, X. AGTML: A novel approach to land cover classification by integrating automatic generation of training samples and machine learning algorithms on Google Earth Engine. Ecol. Indic. 2023, 154, 110904. [Google Scholar] [CrossRef]
- Ouma, Y.; Nkwae, B.; Moalafhi, D.; Odirile, P.; Parida, B.; Anderson, G.; Qi, J. Comparison of Machine Learning Classifiers for Multitemporal and Multisensor Mapping of Urban Lulc Features. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 681–689. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Owojori, A.; Xie, H. Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In Proceedings of the 5th International Symposium on Remote Sensing of Urban Areas, Tempe, AZ, USA, 14–16 March 2005. [Google Scholar]
- Lillesand, T.; Kiefer, R.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hobokan, NJ, USA, 2015. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K.; et al. Intergovernmental Panel on Climate Change Good Practice Guidance for Land Use, Land-Use Change and Forestry; IPCC National Greenhouse Gas Inventories Programme; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan.
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- The District Administrator: Information on the Current Low Water Situation and Appeal for Economical Use of Drinking, Ground and Surface Water. Available online: https://www.lkspn.de/aktuelles/aktuelles-landkreis-spree-neisse/pressearchiv/44818-information-zur-aktuellen-niedrigwassersituation-und-appell-zur-sparsamen-benutzung-von-trink-grund-und-oberflachenwasser.html (accessed on 10 October 2023).
- Kroll, F.; Haase, D. Does demographic change affect land use patterns? Land Use Policy 2010, 27, 726–737. [Google Scholar] [CrossRef]
- Schetke, S.; Haase, D. Multi-criteria assessment of socio-environmental aspects in shrinking cities. Experiences from eastern Germany. Environ. Impact Assess. Rev. 2008, 28, 483–503. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S.; Pham, Q.B.; Chakilu, G.G.; Szabó, S. Understanding the role of training sample size in the uncertainty of high-resolution LULC mapping using random forest. Earth Sci. Inform. 2023, 16, 3667–3677. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE 2019, 14, e0208949. [Google Scholar] [CrossRef] [PubMed]
- Nagel, P.; Yuan, F. High-resolution Land Cover and Impervious Surface Classifications in the Twin Cities Metropolitan Area with NAIP Imagery. Photogramm. Eng. Remote. Sens. 2015, 82, 63–71. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Kakooei, M.; Ghorbanian, A.; Brisco, B.; Delancey, E.; Toure, S.; Reyes, E.L. Wetland Change Analysis in Alberta, Canada Using Four Decades of Landsat Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 10314–10335. [Google Scholar] [CrossRef]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific class. Remote. Sens. Environ. 2006, 104, 1–14. [Google Scholar] [CrossRef]
- Ai, B.; Huang, K.; Zhao, J.; Sun, S.; Jian, Z.; Liu, X. Comparison of Classification Algorithms for Detecting Typical Coastal Reclamation in Guangdong Province with Landsat 8 and Sentinel 2 Images. Remote Sens. 2022, 14, 385. [Google Scholar] [CrossRef]
- Shimizu, K.; Murakami, W.; Furuichi, T.; Estoque, R.C. Mapping Land Use/Land Cover Changes and Forest Disturbances in Vietnam Using a Landsat Temporal Segmentation Algorithm. Remote Sens. 2023, 15, 851. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 08, 611–622. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Federal and State Statistical Offices: Regional Database Germany. Available online: https://www.regionalstatistik.de/genesis/online?operation=previous&levelindex=&step=&titel=&levelid=&acceptscookies=false (accessed on 10 October 2023).
- European Environment Agency: Germany Administrative Boundaries. Available online: https://www.eea.europa.eu/data-and-maps/data/external/germany-administrative-boundaries (accessed on 12 June 2023).
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X. A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS J. Photogramm. Remote Sens. 2023, 206, 311–334. [Google Scholar] [CrossRef]
- What Are the Acquisition Schedules for the Landsat Satellites?|U.S. Geological Survey. Available online: https://www.usgs.gov/faqs/what-are-acquisition-schedules-landsat-satellites (accessed on 15 June 2023).
- Dynamic World—10 m Global Land Cover Dataset in Google Earth Engine. Available online: https://dynamicworld.app/about (accessed on 15 June 2023).
- The Boomtown—BOOMTOWN COTTBUS. Available online: https://www.boomtown.de/die-boomtown.html (accessed on 24 November 2023).
Data Sets | Acquisition Date | Date of Access | Resolution (m) |
---|---|---|---|
USGS Landsat 7 Collection 2 Tier 1 TOA Reflectance | 1 January 2002 to 31 December 2002 | 5 December 2023 | 30 |
USGS Landsat 9 Collection 2 Tier 1 TOA Reflectance | 1 January 2022 to 31 December 2022 | 5 December 2023 | 30 |
LULC Type | Description |
---|---|
Water | All the permanent and seasonal water bodies |
Vegetation | All the green areas, including agricultural land, forests, parks, etc. |
Built Area | Low and high density buildings, roads, and urban open space |
Bare ground | Beaches, exposed rocks, sand dunes, quarries, and gravel pits |
LULC Class | wekaKMeans | SmileCart | SmileRandomForest | RDB | DW |
---|---|---|---|---|---|
Water | 29.9 | 150 | 141 | 56.46 | 71.51 |
Vegetation | 1332.3 | 815 | 983 | 1422.82 | 959.44 |
Built Area | 254.9 | 171 | 123 | 269.04 | 139.57 |
Bare Ground | 129.3 | 610 | 500 | 74.28 | 576.36 |
Total Area, km2 | 1746.4 | 1746.39 | 1746.40 | 1822.6 | 1746.88 |
Classifier | LULC Class | Area, % | Total Area, km2 | ||
---|---|---|---|---|---|
2002 | 2022 | 2002 | 2022 | ||
Water | 1.51 | 1.71 | 1746.36 | 1746.4 | |
Vegetation | 68.7 | 76.29 | |||
wekaKMeans | Built Area | 20.96 | 14.6 | ||
Bare Ground | 8.82 | 7.4 | |||
Water | 24.08 | 8.6 | 1746.37 | 1746.39 | |
Vegetation | 27.88 | 46.66 | |||
SmileCart | Built Area | 20.74 | 9.8 | ||
Bare Ground | 27.3 | 34.94 | |||
Water | 17.46 | 8.05 | 1746.44 | 1746.40 | |
Vegetation | 57.47 | 56.28 | |||
SmileRandomForest | Built Area | 10.26 | 7.02 | ||
Bare Ground | 14.81 | 28.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, R.; Zafor, M.A.; Trachte, K. Land-Use and Land-Cover Changes in Cottbus City and Spree-Neisse District, Germany, in the Last Two Decades: A Study Using Remote Sensing Data and Google Earth Engine. Remote Sens. 2024, 16, 2773. https://doi.org/10.3390/rs16152773
Ahmed R, Zafor MA, Trachte K. Land-Use and Land-Cover Changes in Cottbus City and Spree-Neisse District, Germany, in the Last Two Decades: A Study Using Remote Sensing Data and Google Earth Engine. Remote Sensing. 2024; 16(15):2773. https://doi.org/10.3390/rs16152773
Chicago/Turabian StyleAhmed, Rezwan, Md. Abu Zafor, and Katja Trachte. 2024. "Land-Use and Land-Cover Changes in Cottbus City and Spree-Neisse District, Germany, in the Last Two Decades: A Study Using Remote Sensing Data and Google Earth Engine" Remote Sensing 16, no. 15: 2773. https://doi.org/10.3390/rs16152773
APA StyleAhmed, R., Zafor, M. A., & Trachte, K. (2024). Land-Use and Land-Cover Changes in Cottbus City and Spree-Neisse District, Germany, in the Last Two Decades: A Study Using Remote Sensing Data and Google Earth Engine. Remote Sensing, 16(15), 2773. https://doi.org/10.3390/rs16152773