Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Reference Dataset
2.2.2. IMERG Products
- (1)
- IMERG-Early: This product is accessible within four hours of when measurements are made by the satellite. Due to its short delay, it is extremely useful for real-time applications such as monitoring the effects of extreme hydrological events.
- (2)
- (3)
- IMERG-Final: The IMERG-Final product takes longer to be generated, generally within approximately 3.5 months [43]. It utilizes Global Precipitation Climatology Centre (GPCC) monthly data, which is expected to result in superior accuracy and dependability compared to the first two products. In this study, IMERG Early, IMERG Late, and IMERG Final Run Version 6 (hereafter IMERG-E, IMERG-L, and IMERG-F) were downloaded from (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDE_06/summary?keywords=IMERG) (accessed on 10 January 2024) from January 2001 to December 2020. For a concise comparative analysis, IMERG Early, IMERG Late, and IMERG Final Run Version 7 were also downloaded from (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary?keywords=IMERG) (accessed on 12 July 2024) for the same time period. It is important to note that the primary analyses of the present research were conducted using IMERG version 6 products.
2.2.3. Land Cover Data
2.3. Statistical Analysis
3. Results
3.1. The Ability of the SPPs in Detecting Rainfall
3.2. Temporal Assessment of IMERG-E, IMERG-L, and IMERG-F
3.3. Spatial Assessment of IMERG-E, IMERG-L, and IMERG-F
3.3.1. Evaluation at Seasonal Scale
3.3.2. Evaluation at Annual Scale
3.4. Effects of Land Cover Type on SPPs’ Accuracy
3.5. Effects of Elevation on SPPs’ Accuracy
3.6. Similarities and Differences between IMERG V06 and IMERG V07
3.7. Spatial Evaluation of the SPPs in Capturing Extreme Precipitation Indices
3.7.1. Fixed Threshold Indices
3.7.2. Grid-Related Threshold Indices
3.7.3. Non-Threshold Indices
3.8. Temporal Evaluation of the SPPs in Detecting Extreme Precipitation Indices
4. Discussion
5. Conclusions
- (1)
- All three SPPs are generally successful in detecting precipitation events in the study area.
- (2)
- All three SPPs are able to reproduce the basic inter-monthly precipitation climatology for the study area, but IMERG-E and IMERG-L overestimate rainfall totals in most months.
- (3)
- IMERG-F was superior in matching seasonal and annual rainfall amounts across the study area. IMERG-E and IMERG-L severely overestimated precipitation totals in the lowland areas north of the Persian Gulf. The overestimation appears to be related to the inland water bodies and permanent wetlands that cover the area of severe overestimation. However, on the contrary, the analyses based on IMERG V07 suggest that there is no large and highly unrealistic overestimation over inland water bodies and permanent wetlands as well as in the eastern highlands in IMERG-E and IMERG-L version 7.
- (4)
- Overall, IMERG-F was far superior in replicating spatial and temporal patterns in fixed threshold, grid-related threshold, and non-threshold extreme precipitation indices.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keikhosravi-Kiany, M.S.; Masoodian, S.A.; Balling, R.C., Jr.; Darand, M. Evaluation of Tropical Rainfall Measuring Mission, Integrated Multi-satellite Retrievals for GPM, Climate Hazards Centre InfraRed Precipitation with Station data, and European Centre for Medium-Range Weather Forecasts Reanalysis v5 data in estimating precipitation and capturing meteorological droughts over Iran. Int. J. Climatol. 2022, 42, 2039–2064. [Google Scholar]
- Dejene, I.N.; Moisa, M.B.; Gemeda, D.O. Spatiotemporal monitoring of drought using satellite precipitation products: The case of Borena agro-pastoralists and pastoralists regions, South Ethiopia. Heliyon 2023, 9, e13990. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, R.K.; Sharma, D.; Panda, S.K.; Dubey, S.K.; Sharma, A. Changes of precipitation regime and its indices over Rajasthan state of India: Impact of climate change scenarios experiments. Clim. Dyn. 2019, 52, 3405–3420. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [PubMed]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Ali, G.; Ullah, S.; Liu, M.; Shahzaman, M.; Ullah, I. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan. Atmos. Res. 2021, 249, 105341. [Google Scholar] [CrossRef]
- Shu, Z.; Li, W.; Zhang, J.; Jin, J.; Xue, Q.; Wang, Y.; Wang, G. Historical changes and future trends of extreme precipitation and high temperature in China. Chin. J. Eng. Sci. 2022, 24, 116. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Li, G.; Li, Y. Changes of extreme precipitation in the middle and lower reaches of the Yangtze River and their correlation with atmospheric circulation. Front. Earth Sci. 2023, 11, 1162220. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Aksu, H.; Cetin, M.; Aksoy, H.; Yaldiz, S.G.; Yildirim, I.; Keklik, G. Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey. Nat. Hazards 2022, 111, 2379–2405. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Adler, R.; Adler, D.; Peters-Lidard, C.; Huffman, G. Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J. Hydrometeorol. 2012, 13, 1536–1551. [Google Scholar] [CrossRef]
- Ávila, A.; Justino, F.; Wilson, A.; Bromwich, D.; Amorim, M. Recent precipitation trends, flash floods and landslides in southern Brazil. Environ. Res. Lett. 2016, 11, 114029. [Google Scholar] [CrossRef]
- Marengo, J.A.; Camarinha, P.I.; Alves, L.M.; Diniz, F.; Betts, R.A. Extreme rainfall and hydro-geo-meteorological disaster risk in 1.5, 2.0, and 4.0 °C global warming scenarios: An analysis for Brazil. Front. Clim. 2021, 3, 610433. [Google Scholar] [CrossRef]
- Trezzini, F.; Giannella, G.; Guida, T. Landslide and flood: Economic and social impacts in Italy. In Landslide Science and Practice: Volume 7: Social and Economic Impact and Policies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 171–176. [Google Scholar]
- Winter, M.G.; Peeling, D.; Palmer, D.; Peeling, J. Economic impacts of landslides and floods on a road network. AUC Geogr. 2019, 54, 207–220. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather. Clim. Extremes 2021, 34, 100380. [Google Scholar] [CrossRef] [PubMed]
- Sarachi, S.; Hsu, K.-L.; Sorooshian, S. A Statistical model for the uncertainty analysis of satellite precipitation products. J. Hydrometeorol. 2015, 16, 2101–2117. [Google Scholar] [CrossRef]
- Battaglia, A.; Kollias, P.; Dhillon, R.; Roy, R.; Tanelli, S.; Lamer, K.; Grecu, M.; Lebsock, M.; Watters, D.; Mroz, K.; et al. Spaceborne cloud and precipitation radars: Status, challenges, and ways forward. Rev. Geophys. 2020, 58, e2019RG000686. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; Kiany, M.; Masoodian, S. Evaluation of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA v7) in drought monitoring over southwest Iran. Clim. Res. 2020, 82, 55–73. [Google Scholar] [CrossRef]
- Houngnibo, M.C.M.; Minoungou, B.; Traore, S.B.; Maidment, R.I.; Alhassane, A.; Ali, A. Validation of high-resolution satellite precipitation products over West Africa for rainfall monitoring and early warning. Front. Clim. 2023, 5, 1185754. [Google Scholar] [CrossRef]
- Keikhosravi-Kiany, M.S.; Masoodian, S.A.; Balling, R.C., Jr. Reliability of satellite-based precipitation products in capturing extreme precipitation indices over Iran. Adv. Space Res. 2023, 71, 1451–1472. [Google Scholar] [CrossRef]
- Caloiero, T.; Caroletti, G.N.; Coscarelli, R. IMERG-based meteorological drought analysis over Italy. Climate 2021, 9, 65. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A. A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather. Clim. Extrem. 2022, 36, 100458. [Google Scholar] [CrossRef]
- Weng, P.; Tian, Y.; Jiang, Y.; Chen, D.; Kang, J. Assessment of GPM IMERG and GSMaP daily precipitation products and their utility in droughts and floods monitoring across Xijiang River Basin. Atmos. Res. 2023, 286, 106673. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Nan, L.; Yang, M.; Wang, H.; Xiang, Z.; Hao, S. Comprehensive evaluation of global precipitation measurement mission (GPM) IMERG precipitation products over mainland China. Water 2021, 13, 3381. [Google Scholar] [CrossRef]
- Saouabe, T.; Naceur, K.A.; El Khalki, E.M.; Hadri, A.; Saidi, M.E. GPM-IMERG product: A new way to assess the climate change impact on water resources in a Moroccan semi-arid basin. J. Water Clim. Change 2022, 13, 2559–2576. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Webber, B.G.M.; Matthews, A.J.; Feist, M.M.; Stein, T.H.M.; Holloway, C.E.; Abdullah, M.F.A.B. Validation of GPM IMERG extreme precipitation in the Maritime Continent by station and radar data. Earth Space Sci. 2021, 8, e2021EA001738. [Google Scholar] [CrossRef]
- Ramadhan, R.; Marzuki, M.; Yusnaini, H.; Muharsyah, R.; Suryanto, W.; Sholihun, S.; Vonnisa, M.; Battaglia, A.; Hashiguchi, H. Capability of GPM IMERG products for extreme precipitation analysis over the indonesian maritime continent. Remote Sens. 2022, 14, 412. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, M.; Ma, M.; Tang, G.; Wang, T.; Zhao, X.; Ma, S.; Wu, J.; Wang, W. Can GPM IMERG capture extreme precipitation in North China Plain? Remote Sens. 2022, 14, 928. [Google Scholar] [CrossRef]
- Nepal, B.; Shrestha, D.; Sharma, S.; Shrestha, M.S.; Aryal, D.; Shrestha, N. Assessment of GPM-Era Satellite Products’ (IMERG and GSMaP) ability to detect precipitation extremes over mountainous country Nepal. Atmosphere 2021, 12, 254. [Google Scholar] [CrossRef]
- Bakhtar, A.; Rahmati, A.; Shayeghi, A.; Teymoori, J.; Ghajarnia, N.; Saemian, P. Spatio-Temporal Evaluation of GPM-IMERGV6.0 final run precipitation product in capturing extreme precipitation events across Iran. Water 2022, 14, 1650. [Google Scholar] [CrossRef]
- Kiany, M.S.K.; Masoodian, S.A.; Balling, R.C., Jr.; Montazeri, M. Evaluation of the TRMM 3B42 product for extreme precipitation analysis over southwestern Iran. Adv. Space Res. 2020, 66, 2094–2112. [Google Scholar] [CrossRef]
- Kiany, M.S.K.; Masoodian, S.A.; Balling, R.C.; Svoma, B.M. Spatial and Temporal Variations of Snow Cover in the Karoon River Basin, Iran, 2003–2015. Water 2017, 9, 965. [Google Scholar] [CrossRef]
- Raziei, T.; Mofidi, A.; Santos, J.A.; Bordi, I. Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation. Int. J. Clim. 2012, 32, 1226–1237. [Google Scholar] [CrossRef]
- Darand, M.; Khandu, K. Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran. J. Arid. Environ. 2020, 178, 104172. [Google Scholar] [CrossRef]
- Eini, M.R.; Olyaei, M.A.; Kamyab, T.; Teymoori, J.; Brocca, L.; Piniewski, M. Evaluating three non-gauge-corrected satellite precipitation estimates by a regional gauge interpolated dataset over Iran. J. Hydrol. Reg. Stud. 2021, 38, 100942. [Google Scholar] [CrossRef]
- Shirgholami, M.; Masoodian, S.A. Analysis of Spatiotemporal Variations and Trends of Precipitation in Yazd Province by Asfezari Database During 1349 to 1394. J. Nat. Environ. Hazards 2023, 12, 95–114. [Google Scholar]
- Masoodian, S.A. Asfezary National Gridded Daily Precipitation Data Base (Version 3). Geogr. Dev. 2022, 20, 107–127. [Google Scholar]
- Tang, S.; Li, R.; He, J.; Wang, H.; Fan, X.; Yao, S. Comparative evaluation of the GPM IMERG early, late, and final hourly precipitation products using the CMPA data over Sichuan basin of China. Water 2020, 12, 554. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Zhu, Y.; Cui, Y.; Wang, X. Evaluating the hydrological utility of latest IMERG products over the Upper Huaihe River Basin, China. Atmospheric Res. 2019, 225, 17–29. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. (ATBD) Version 2015, 4, 26. [Google Scholar]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018; pp. 1–18. [Google Scholar]
- Wang, H.; Shao, Z.; Gao, T.; Zou, T.; Liu, J.; Yuan, H. Extreme precipitation event over the Yellow Sea western coast: Is there a trend? Quat. Int. 2017, 441, 1–17. [Google Scholar]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef]
- Wolff, D.B.; Fisher, B.L. Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteorol. Clim. 2009, 48, 1069–1099. [Google Scholar] [CrossRef]
- Peinó, E.; Bech, J.; Udina, M. Performance assessment of GPM IMERG products at different time resolutions, climatic areas and topographic conditions in catalonia. Remote Sens. 2022, 14, 5085. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of topography and rainfall intensity on the accuracy of IMERG precipitation estimates in an arid region. Remote Sens. 2020, 13, 13. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Kummerow, C.; Tapiador, F.J. Assessment of IMERG Precipitation Estimates over Europe. Remote Sens. 2019, 11, 2470. [Google Scholar] [CrossRef]
- Wang, C.; Tang, G.; Han, Z.; Guo, X.; Hong, Y. Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements. J. Hydrol. 2018, 564, 342–356. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Gao, L.; Zhong, Y.; Peng, X. Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements. Remote Sens. 2023, 15, 5622. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Yang, Z.; Yao, T. Evaluation of the Integrated multi-satellite retrievals (IMERG) for global precipitation measurement (GPM) mission over the Mainland China at multiple scales. J. Lake Sci. 2019, 31, 560–572. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J. Integrated multi-satellite retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). In Satellite Precipitation Measurement: Volume 1; Springer: Cham, Germany, 2020; pp. 343–353. [Google Scholar]
- Aksu, H.; Taflan, G.Y.; Yaldız, S.G.; Akgül, M.A. Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Turkiye. Atmos. Res. 2023, 291, 106826. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, W.; Hu, J.; Du, L.; Du, L. Capability of IMERG V6 early, late, and final precipitation products for monitoring extreme precipitation events. Remote Sens. 2021, 13, 689. [Google Scholar] [CrossRef]
- Dong, W.; Wang, G.; Guo, L.; Sun, J.; Sun, X. Evaluation of three gridded precipitation products in characterizing extreme precipitation over the Hengduan mountains region in China. Remote Sens. 2022, 14, 4408. [Google Scholar] [CrossRef]
Metric | Formula | Unit |
---|---|---|
Probability of Detection (POD) | - | |
False Alarm Ratio | - | |
Critical Success Index | - | |
Pearson Linear Correlation Coefficient | - | |
Relative Bias | percent | |
Bias | mm | |
Root-Mean-Square Error | mm |
Index | Definition | Unit | |
---|---|---|---|
Fixed threshold indices | R10 | Total number of counts per year with precipitation ≥ 10 mm | days |
R20 | Total number of counts per year with precipitation ≥ 20 mm | days | |
CWD | Maximum number of consecutive wet days (CWD) annually with precipitation ≥ 1 mm | days | |
CDD | Maximum number of consecutive dry days (CDD) annually with precipitation < 1 mm | days | |
Grid-related threshold indices | R95p | Total number of counts per year when daily precipitation > 95th percentile | days |
R99p | Total number of counts per year when daily precipitation > 99th percentile | days | |
R95pTOT | Total amount of precipitation annually when daily precipitation > 95th percentile | mm | |
R99pTOT | Total amount of precipitation annually when daily precipitation > 99th percentile | mm | |
Non-threshold indices | Rx1day | Maximum one-day precipitation in a year | mm |
SDII | Total amount of precipitation in a year divided by the total counts of days with rainfall ≥ 1 mm (Simple daily intensity index, SDII) | mm | |
PRCPTOT | Total yearly precipitation when precipitation ≥ 1 mm | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keikhosravi-Kiany, M.S.; Balling, R.C., Jr. Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran. Remote Sens. 2024, 16, 2779. https://doi.org/10.3390/rs16152779
Keikhosravi-Kiany MS, Balling RC Jr. Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran. Remote Sensing. 2024; 16(15):2779. https://doi.org/10.3390/rs16152779
Chicago/Turabian StyleKeikhosravi-Kiany, Mohammad Sadegh, and Robert C. Balling, Jr. 2024. "Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran" Remote Sensing 16, no. 15: 2779. https://doi.org/10.3390/rs16152779
APA StyleKeikhosravi-Kiany, M. S., & Balling, R. C., Jr. (2024). Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran. Remote Sensing, 16(15), 2779. https://doi.org/10.3390/rs16152779