Spatiotemporal Distribution, Sources, and Impact on Atmospheric Oxidation of Reactive Nitrogen Oxides in the North China Plain Agricultural Regions in Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. MAX-DOAS Measurement Setup
2.2. Spectral Analysis
2.3. Vertical Profile Retrievals
2.4. Calculation of Pollutant Growth Percentages during Haze Days Compared to Non-Haze Days
2.5. PSCF Analysis
2.6. Calculation of Conversion Rate from NO2 to HONO
2.7. TUV Model and OH Generation Rate Calculation
2.8. Ancillary Data
3. Results
3.1. Validations of NO2 VCD and AOD Measured by MAX-DOAS
3.2. Measurement Overview
3.3. The Difference of Aerosol, NO2, and HONO Profiles during Non-Haze and Haze Days
3.4. Aerosols and NO2 Potential Sources in Agricultural Regions in Summer
3.5. Heterogeneous Contribution to HONO from NO2 in Agricultural Regions in Summer
3.6. OH Radicals Produced from HONO Photolysis at Different Altitudes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Nieto, D.; Benavent, N.; Saiz-Lopez, A. Measurements of Atmospheric HONO Vertical Distribution and Temporal Evolution in Madrid (Spain) Using the MAX-DOAS Technique. Sci. Total Environ. 2018, 643, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-J.; Yang, L.; Cao, J.; Wang, Q.; Tie, X.; Ho, K.-F.; Shen, Z.; Zhang, R.; Li, G.; Zhu, C.; et al. Concentration and Sources of Atmospheric Nitrous Acid (HONO) at an Urban Site in Western China. Sci. Total Environ. 2017, 593–594, 165–172. [Google Scholar] [CrossRef]
- Michoud, V.; Kukui, A.; Camredon, M.; Colomb, A.; Borbon, A.; Miet, K.; Aumont, B.; Beekmann, M.; Durand-Jolibois, R.; Perrier, S.; et al. Radical Budget Analysis in a Suburban European Site during the MEGAPOLI Summer Field Campaign. Atmos. Chem. Phys. 2012, 12, 11951–11974. [Google Scholar] [CrossRef]
- Perner, D.; Platt, U. Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption. Geophys. Res. Lett. 1979, 6, 917–920. [Google Scholar] [CrossRef]
- Hendrick, F.; Müller, J.-F.; Clémer, K.; Wang, P.; De Mazière, M.; Fayt, C.; Gielen, C.; Hermans, C.; Ma, J.Z.; Pinardi, G.; et al. Four Years of Ground-Based MAX-DOAS Observations of HONO and NO2 in the Beijing Area. Atmos. Chem. Phys. 2014, 14, 765–781. [Google Scholar] [CrossRef]
- Su, H.; Cheng, Y.F.; Cheng, P.; Zhang, Y.H.; Dong, S.; Zeng, L.M.; Wang, X.; Slanina, J.; Shao, M.; Wiedensohler, A. Observation of Nighttime Nitrous Acid (HONO) Formation at a Non-Urban Site during PRIDE-PRD2004 in China. Atmos. Environ. 2008, 42, 6219–6232. [Google Scholar] [CrossRef]
- Acker, K.; Möller, D.; Wieprecht, W.; Meixner, F.X.; Bohn, B.; Gilge, S.; Plass-Dülmer, C.; Berresheim, H. Strong Daytime Production of OH from HNO2 at a Rural Mountain Site. Geophys. Res. Lett. 2006, 33, L02809. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Xue, C.; Liu, P.; He, X.; Li, X.; Mu, Y. The Seasonal Variations and Potential Sources of Nitrous Acid (HONO) in the Rural North China Plain. Environ. Pollut. 2022, 311, 119967. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Dentener, F.J.; Peters, W.; Krol, M.C. On the Role of Hydroxyl Radicals in the Self-Cleansing Capacity of the Troposphere. Atmos. Chem. Phys. 2004, 4, 2337–2344. [Google Scholar] [CrossRef]
- Jarvis, D.L.; Leaderer, B.P.; Chinn, S.; Burney, P.G. Indoor Nitrous Acid and Respiratory Symptoms and Lung Function in Adults. Thorax 2005, 60, 474–479. [Google Scholar] [CrossRef]
- Ohyama, M.; Nakajima, T.; Minejima, C.; Azuma, K.; Oka, K.; Itano, Y.; Kudo, S.; Takenaka, N. Association between Indoor Nitrous Acid, Outdoor Nitrogen Dioxide, and Asthma Attacks: Results of a Pilot Study. Int. J. Environ. Health Res. 2019, 29, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, M.; Gundel, L.A.; Pankow, J.F.; Jacob, P.; Singer, B.C.; Destaillats, H. Formation of Carcinogens Indoors by Surface-Mediated Reactions of Nicotine with Nitrous Acid, Leading to Potential Thirdhand Smoke Hazards. Proc. Natl. Acad. Sci. USA 2010, 107, 6576–6581. [Google Scholar] [CrossRef]
- Ge, M.; Tong, S.; Wang, W.; Zhang, W.; Chen, M.; Peng, C.; Li, J.; Zhou, L.; Chen, Y.; Liu, M. Important Oxidants and Their Impact on the Environmental Effects of Aerosols. J. Phys. Chem. A 2021, 125, 3813–3825. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Brauers, T.; Häseler, R.; Bohn, B.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Lou, S.; Lu, K.D.; Rohrer, F.; et al. Exploring the Atmospheric Chemistry of Nitrous Acid (HONO) at a Rural Site in Southern China. Atmos. Chem. Phys. 2012, 12, 1497–1513. [Google Scholar] [CrossRef]
- Su, H.; Cheng, Y.F.; Shao, M.; Gao, D.F.; Yu, Z.Y.; Zeng, L.M.; Slanina, J.; Zhang, Y.H.; Wiedensohler, A. Nitrous Acid (HONO) and Its Daytime Sources at a Rural Site during the 2004 PRIDE-PRD Experiment in China. J. Geophys. Res. Atmos. 2008, 113, D14312. [Google Scholar] [CrossRef]
- Calvert, J.G.; Yarwood, G.; Dunker, A.M. An Evaluation of the Mechanism of Nitrous Acid Formation in the Urban Atmosphere. Res. Chem. Intermed. 1994, 20, 463–502. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Zhan, H.; Zhang, Y.; Zhang, X.; Li, W.; Tong, S.; Pei, C.; Wang, Y.; Chen, Y.; et al. Contribution of Vehicle Emission and NO2 Surface Conversion to Nitrous Acid (HONO) in Urban Environments: Implications from Tests in a Tunnel. Environ. Sci. Technol. 2021, 55, 15616–15624. [Google Scholar] [CrossRef]
- Oswald, R.; Behrendt, T.; Ermel, M.; Wu, D.; Su, H.; Cheng, Y.; Breuninger, C.; Moravek, A.; Mougin, E.; Delon, C.; et al. HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive Nitrogen. Science 2013, 341, 1233–1235. [Google Scholar] [CrossRef]
- Stemmler, K.; Ammann, M.; Donders, C.; Kleffmann, J.; George, C. Photosensitized Reduction of Nitrogen Dioxide on Humic Acid as a Source of Nitrous Acid. Nature 2006, 440, 195–198. [Google Scholar] [CrossRef]
- Han, C.; Yang, W.; Wu, Q.; Yang, H.; Xue, X. Heterogeneous Photochemical Conversion of NO2 to HONO on the Humic Acid Surface under Simulated Sunlight. Environ. Sci. Technol. 2016, 50, 5017–5023. [Google Scholar] [CrossRef]
- Su, H.; Cheng, Y.; Oswald, R.; Behrendt, T.; Trebs, I.; Meixner, F.X.; Andreae, M.O.; Cheng, P.; Zhang, Y.; Pöschl, U. Soil Nitrite as a Source of Atmospheric HONO and OH Radicals. Science 2011, 333, 1616–1618. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, R.; Zhao, H.; Wang, Z.; Chen, L.; Zhou, B. Long-Term Observation of Atmospheric Nitrous Acid (HONO) and Its Implication to Local NO2 Levels in Shanghai, China. Atmos. Environ. 2013, 77, 718–724. [Google Scholar] [CrossRef]
- Cui, L.; Li, R.; Zhang, Y.; Meng, Y.; Fu, H.; Chen, J. An Observational Study of Nitrous Acid (HONO) in Shanghai, China: The Aerosol Impact on HONO Formation during the Haze Episodes. Sci. Total Environ. 2018, 630, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Qin, M.; Fang, W.; Duan, J.; Tang, K.; Zhang, H.; Shao, D.; Liao, Z.; Feng, Y.; Huang, Y.; et al. Measurement of HONO Flux Using the Aerodynamic Gradient Method over an Agricultural Field in the Huaihe River Basin, China. Atmos. Chem. Complex Air Pollut. 2022, 114, 297–307. [Google Scholar] [CrossRef]
- Tang, K.; Qin, M.; Duan, J.; Fang, W.; Meng, F.; Liang, S.; Xie, P.; Liu, J.; Liu, W.; Xue, C.; et al. A Dual Dynamic Chamber System Based on IBBCEAS for Measuring Fluxes of Nitrous Acid in Agricultural Fields in the North China Plain. Atmos. Environ. 2019, 196, 10–19. [Google Scholar] [CrossRef]
- Xue, C.; Ye, C.; Zhang, C.; Catoire, V.; Liu, P.; Gu, R.; Zhang, J.; Ma, Z.; Zhao, X.; Zhang, W.; et al. Evidence for Strong HONO Emission from Fertilized Agricultural Fields and Its Remarkable Impact on Regional O3 Pollution in the Summer North China Plain. ACS Earth Space Chem. 2021, 5, 340–347. [Google Scholar] [CrossRef]
- Meng, F.; Qin, M.; Tang, K.; Duan, J.; Fang, W.; Liang, S.; Ye, K.; Xie, P.; Sun, Y.; Xie, C.; et al. High-Resolution Vertical Distribution and Sources of HONO and NO2 in the Nocturnal Boundary Layer in Urban Beijing, China. Atmos. Chem. Phys. 2020, 20, 5071–5092. [Google Scholar] [CrossRef]
- Acker, K.; Febo, A.; Trick, S.; Perrino, C.; Bruno, P.; Wiesen, P.; Möller, D.; Wieprecht, W.; Auel, R.; Giusto, M.; et al. Nitrous Acid in the Urban Area of Rome. Atmos. Environ. 2006, 40, 3123–3133. [Google Scholar] [CrossRef]
- Gall, E.T.; Griffin, R.J.; Steiner, A.L.; Dibb, J.; Scheuer, E.; Gong, L.; Rutter, A.P.; Cevik, B.K.; Kim, S.; Lefer, B.; et al. Evaluation of Nitrous Acid Sources and Sinks in Urban Outflow. Atmos. Environ. 2016, 127, 272–282. [Google Scholar] [CrossRef]
- VandenBoer, T.; Brown, S.; Murphy, J.; Keene, W.; Young, C.; Pszenny, A.; Kim, S.; Warneke, C.; de Gouw, J.; Maben, J.; et al. Understanding the Role of the Ground Surface in HONO Vertical Structure: High Resolution Vertical Profiles during NACHTT-11. J. Geophys. Res. 2013, 118, 10155–10171. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, X.; Shepson, P.B.; Gao, H.; Alaghmand, M.; Stirm, B. Aircraft Measurement of HONO Vertical Profiles over a Forested Region. Geophys. Res. Lett. 2009, 36, L15820. [Google Scholar] [CrossRef]
- Ye, C.; Zhou, X.; Pu, D.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Cantrell, C.; Mauldin III, R.L.; Weinheimer, A.; et al. Tropospheric HONO Distribution and Chemistry in the Southeastern US. Atmos. Chem. Phys. 2018, 18, 9107–9120. [Google Scholar] [CrossRef]
- Li, X.; Rohrer, F.; Hofzumahaus, A.; Brauers, T.; Häseler, R.; Bohn, B.; Broch, S.; Fuchs, H.; Gomm, S.; Holland, F.; et al. Missing Gas-Phase Source of HONO Inferred from Zeppelin Measurements in the Troposphere. Science 2014, 344, 292–296. [Google Scholar] [CrossRef]
- Young, C.J.; Washenfelder, R.A.; Roberts, J.M.; Mielke, L.H.; Osthoff, H.D.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Veres, P.R.; Cochran, A.K.; et al. Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget. Environ. Sci. Technol. 2012, 46, 10965–10973. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.W.; Tsai, C.; Lefer, B.; Haman, C.; Grossberg, N.; Brune, W.H.; Ren, X.; Luke, W.; Stutz, J. Daytime HONO Vertical Gradients during SHARP 2009 in Houston, TX. Atmos. Chem. Phys. 2012, 12, 635–652. [Google Scholar] [CrossRef]
- Ryan, R.G.; Rhodes, S.; Tully, M.; Wilson, S.; Jones, N.; Frieß, U.; Schofield, R. Daytime HONO, NO2 and Aerosol Distributions from MAX-DOAS Observations in Melbourne. Atmos. Chem. Phys. 2018, 18, 13969–13985. [Google Scholar] [CrossRef]
- Li, L.; Lu, C.; Chan, P.-W.; Zhang, X.; Yang, H.-L.; Lan, Z.-J.; Zhang, W.-H.; Liu, Y.-W.; Pan, L.; Zhang, L. Tower Observed Vertical Distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos. Environ. 2020, 220, 117083. [Google Scholar] [CrossRef]
- Kang, Y.; Tang, G.; Li, Q.; Liu, B.; Cao, J.; Hu, Q.; Wang, Y. Evaluation and Evolution of MAX-DOAS-Observed Vertical NO2 Profiles in Urban Beijing. Adv. Atmos. Sci. 2021, 38, 1188–1196. [Google Scholar] [CrossRef]
- Wagner, T.; Dix, B.; Friedeburg, C.V.; Frieß, U.; Sanghavi, S.; Sinreich, R.; Platt, U. MAX-DOAS O4 Measurements: A New Technique to Derive Information on Atmospheric Aerosols—Principles and Information Content. J. Geophys. Res. Atmos. 2004, 109, D22205. [Google Scholar] [CrossRef]
- Xing, C.; Xu, S.; Song, Y.; Liu, C.; Liu, Y.; Lu, K.; Tan, W.; Zhang, C.; Hu, Q.; Wang, S.; et al. A New Insight into the Vertical Differences in NO2 Heterogeneous Reaction to Produce HONO over Inland and Marginal Seas. Atmos. Chem. Phys. 2023, 23, 5815–5834. [Google Scholar] [CrossRef]
- Bobrowski, N.; Hönninger, G.; Galle, B.; Platt, U. Detection of Bromine Monoxide in a Volcanic Plume. Nature 2003, 423, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Vlemmix, T.; Hendrick, F.; Pinardi, G.; De Smedt, I.; Fayt, C.; Hermans, C.; Piters, A.; Wang, P.; Levelt, P.; Van Roozendael, M. MAX-DOAS Observations of Aerosols, Formaldehyde and Nitrogen Dioxide in the Beijing Area: Comparison of Two Profile Retrieval Approaches. Atmos. Meas. Tech. 2015, 8, 941–963. [Google Scholar] [CrossRef]
- Xing, C.; Liu, C.; Hu, Q.; Fu, Q.; Wang, S.; Lin, H.; Zhu, Y.; Wang, S.; Wang, W.; Javed, Z.; et al. Vertical Distributions of Wintertime Atmospheric Nitrogenous Compounds and the Corresponding OH Radicals Production in Leshan, Southwest China. J. Environ. Sci. 2021, 105, 44–55. [Google Scholar] [CrossRef]
- Xue, C.; Ye, C.; Zhang, Y.; Ma, Z.; Liu, P.; Zhang, C.; Zhao, X.; Liu, J.; Mu, Y. Development and Application of a Twin Open-Top Chambers Method to Measure Soil HONO Emission in the North China Plain. Sci. Total Environ. 2019, 659, 621–631. [Google Scholar] [CrossRef]
- Javed, Z.; Tanvir, A.; Bilal, M.; Su, W.; Xia, C.; Rehman, A.; Zhang, Y.; Sandhu, O.; Xing, C.; Ji, X.; et al. Recommendations for HCHO and SO2 Retrieval Settings from MAX-DOAS Observations under Different Meteorological Conditions. Remote Sens. 2021, 13, 2244. [Google Scholar] [CrossRef]
- Ji, X.; Liu, C.; Wang, Y.; Hu, Q.; Lin, H.; Zhao, F.; Xing, C.; Tang, G.; Zhang, J.; Wagner, T. Ozone Profiles without Blind Area Retrieved from MAX-DOAS Measurements and Comprehensive Validation with Multi-Platform Observations. Remote Sens. Environ. 2023, 284, 113339. [Google Scholar] [CrossRef]
- Lampel, J.; Wang, Y.; Hilboll, A.; Beirle, S.; Sihler, H.; Puķīte, J.; Platt, U.; Wagner, T. The Tilt Effect in DOAS Observations. Atmos. Meas. Tech. 2017, 10, 4819–4831. [Google Scholar] [CrossRef]
- Xing, C.; Liu, C.; Wang, S.; Chan, K.L.; Gao, Y.; Huang, X.; Su, W.; Zhang, C.; Dong, Y.; Fan, G.; et al. Observations of the Vertical Distributions of Summertime Atmospheric Pollutants and the Corresponding Ozone Production in Shanghai, China. Atmos. Chem. Phys. 2017, 17, 14275–14289. [Google Scholar] [CrossRef]
- Wagner, T.; Apituley, A.; Beirle, S.; Dörner, S.; Friess, U.; Remmers, J.; Shaiganfar, R. Cloud Detection and Classification Based on MAX-DOAS Observations. Atmos. Meas. Tech. 2014, 7, 1289–1320. [Google Scholar] [CrossRef]
- Wang, Y.; Dörner, S.; Donner, S.; Böhnke, S.; De Smedt, I.; Dickerson, R.R.; Dong, Z.; He, H.; Li, Z.; Li, Z.; et al. Vertical Profiles of NO2, SO2, HONO, HCHO, CHOCHO and Aerosols Derived from MAX-DOAS Measurements at a Rural Site in the Central Western North China Plain and Their Relation to Emission Sources and Effects of Regional Transport. Atmos. Chem. Phys. 2019, 19, 5417–5449. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, Y.; Wang, Y.; Zhou, Q.; Lv, S.; Ma, J. Aerosol and Cloud Classifications Derived from MAX-DOAS Measurements in Urban North China and Their Comparisons to Multiple Remote Sensing Datasets. In Proceedings of the 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 28–31 December 2019; pp. 1–4. [Google Scholar]
- Wagner, T.; Senne, T.; Erle, F.; Otten, C.; Stutz, J.; Pfeilsticker, K.; Platt, U. Determination of Cloud Properties and Cloud Type from DOAS-Measurements; Varotsos, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 53, pp. 327–336. [Google Scholar]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 Absorption Cross-Section from 42,000 cm−1 to 10,000 cm−1 (238–1000 Nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High Spectral Resolution Ozone Absorption Cross-Sections—Part 2: Temperature Dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Temperature Dependent Absorption Cross-Sections of O2–O2 Collision Pairs between 340 and 630 Nm and at Atmospherically Relevant Pressure. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef] [PubMed]
- Meller, R.; Moortgat, G.K. Temperature Dependence of the Absorption Cross Sections of Formaldehyde between 223 and 323 K in the Wavelength Range 225–375 Nm. J. Geophys. Res. Atmos. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the High-Temperature Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New Ultraviolet Absorption Cross-Sections of BrO at Atmospheric Temperatures Measured by Time-Windowing Fourier Transform Spectroscopy. J. Photochem. Photobiol. Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Stutz, J.; Kim, E.S.; Platt, U.; Bruno, P.; Perrino, C.; Febo, A. UV-Visible Absorption Cross Sections of Nitrous Acid. J. Geophys. Res. Atmos. 2000, 105, 14585–14592. [Google Scholar] [CrossRef]
- Chance, K.; Kurucz, R.L. An Improved High-Resolution Solar Reference Spectrum for Earth’s Atmosphere Measurements in the Ultraviolet, Visible, and near Infrared. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1289–1295. [Google Scholar] [CrossRef]
- Alicke, B.; Platt, U.; Stutz, J. Impact of Nitrous Acid Photolysis on the Total Hydroxyl Radical Budget during the Limitation of Oxidant Production/Pianura Padana Produzione Di Ozono Study in Milan. J. Geophys. Res. Atmos. 2002, 107, LOP 9-1–LOP 9-17. [Google Scholar] [CrossRef]
- Frieß, U.; Monks, P.S.; Remedios, J.J.; Rozanov, A.; Sinreich, R.; Wagner, T.; Platt, U. MAX-DOAS O4 Measurements: A New Technique to Derive Information on Atmospheric Aerosols: 2. Modeling Studies. J. Geophys. Res. Atmos. 2006, 111, D14203. [Google Scholar] [CrossRef]
- Frieß, U.; Sihler, H.; Sander, R.; Pöhler, D.; Yilmaz, S.; Platt, U. The Vertical Distribution of BrO and Aerosols in the Arctic: Measurements by Active and Passive Differential Optical Absorption Spectroscopy. J. Geophys. Res. Atmos. 2011, 116, D00R04. [Google Scholar] [CrossRef]
- Rozanov, A.; Rozanov, V.; Buchwitz, M.; Kokhanovsky, A.; Burrows, J.P. SCIATRAN 2.0—A New Radiative Transfer Model for Geophysical Applications in the 175–2400 nm Spectral Region. Adv. Space Res. 2005, 36, 1015–1019. [Google Scholar] [CrossRef]
- Xing, C.; Liu, C.; Li, Q.; Wang, S.; Tan, W.; Zou, T.; Wang, Z.; Lu, C. Observations of HONO and Its Precursors between Urban and Its Surrounding Agricultural Fields: The Vertical Transports, Sources and Contribution to OH. Sci. Total Environ. 2024, 915, 169159. [Google Scholar] [CrossRef] [PubMed]
- Chong, X.; Wang, Y.; Liu, R.; Zhang, Y.; Zhang, Y.; Zheng, W. Pollution Characteristics and Source Difference of Gaseous Elemental Mercury between Haze and Non-Haze Days in Winter. Sci. Total Environ. 2019, 678, 671–680. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Khokhar, M.F.; Xing, C.; Tan, W.; Subhani, M.A.; Rehman, A.; Tanvir, A. Investigating the Impact of Glyoxal Retrieval from MAX-DOAS Observations during Haze and Non-Haze Conditions in Beijing. J. Environ. Sci. 2019, 80, 296–305. [Google Scholar] [CrossRef]
- Hong, Q.; Xie, Z.; Liu, C.; Wang, F.; Xie, P.; Kang, H.; Xu, J.; Wang, J.; Wu, F.; He, P.; et al. Speciated Atmospheric Mercury on Haze and Non-Haze Days in an Inland City in China. Atmos. Chem. Phys. 2016, 16, 13807–13821. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Arimoto, R. The Contribution from Distant Dust Sources to the Atmospheric Particulate Matter Loadings at XiAn, China during Spring. Sci. Total Environ. 2006, 368, 875–883. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.; Xu, J.; Li, A.; Tian, X.; Hu, Z.; Huang, Y.; Li, X.; Zhang, Q.; Ren, H.; et al. Use of the PSCF Method to Analyze the Variations of Potential Sources and Transports of NO2, SO2, and HCHO Observed by MAX-DOAS in Nanjing, China during 2019. Sci. Total Environ. 2021, 782, 146865. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS Software for Meteorological Data Visualization and Analysis. Meteorol. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Madronich, S.; Flocke, S. The Role of Solar Radiation in Atmospheric Chemistry. In Environmental Photochemistry; Boule, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–26. ISBN 978-3-540-69044-3. [Google Scholar]
- Xing, C.; Liu, C.; Wang, S.; Hu, Q.; Liu, H.; Tan, W.; Zhang, W.; Li, B.; Liu, J. A New Method to Determine the Aerosol Optical Properties from Multiple-Wavelength O4 Absorptions by MAX-DOAS Observation. Atmos. Meas. Tech. 2019, 12, 3289–3302. [Google Scholar] [CrossRef]
- Xu, S.; Wang, S.; Xia, M.; Lin, H.; Xing, C.; Ji, X.; Su, W.; Tan, W.; Liu, C.; Hu, Q. Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China. Remote Sens. 2021, 13, 3518. [Google Scholar] [CrossRef]
- Cai, K.; Li, S.; Lai, J.; Xia, Y.; Wang, Y.; Hu, X.; Li, A. Evaluation of TROPOMI and OMI Tropospheric NO2 Products Using Measurements from MAX-DOAS and State-Controlled Stations in the Jiangsu Province of China. Atmosphere 2022, 13, 886. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, C.; Hu, Q.; Teng, J.; You, D.; Zhang, C.; Ou, J.; Liu, T.; Lin, J.; Xu, T.; et al. Impacts of TROPOMI-Derived NOX Emissions on NO2 and O3 Simulations in the NCP during COVID-19. ACS Environ. Au 2022, 2, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.; Gryning, S.-E.; Hahmann, A.N. Observations of the Atmospheric Boundary Layer Height under Marine Upstream Flow Conditions at a Coastal Site. J. Geophys. Res. Atmos. 2013, 118, 1924–1940. [Google Scholar] [CrossRef]
- Jin, J.; Henzing, B.; Segers, A. How Aerosol Size Matters in Aerosol Optical Depth (AOD) Assimilation and the Optimization Using the Ångström Exponent. Atmos. Chem. Phys. 2023, 23, 1641–1660. [Google Scholar] [CrossRef]
- Mali, P.; Biswas, M.S.; Beirle, S.; Wagner, T.; Hulswar, S.; Inamdar, S.; Mahajan, A.S. Aerosol Measurements over India: Comparison of MAX-DOAS Measurements with Ground-Based (AERONET) and Satellite-Based (MODIS) Data. Aerosol Air Qual. Res. 2024, 24, 230076. [Google Scholar] [CrossRef]
- Liu, L.; Guo, J.; Miao, Y.; Liu, L.; Li, J.; Chen, D.; He, J.; Cui, C. Elucidating the Relationship between Aerosol Concentration and Summertime Boundary Layer Structure in Central China. Environ. Pollut. 2018, 241, 646–653. [Google Scholar] [CrossRef]
- Cheng, S.; Jin, J.; Ma, J.; Xu, X.; Ran, L.; Ma, Z.; Chen, J.; Guo, J.; Yang, P.; Wang, Y.; et al. Measuring the Vertical Profiles of Aerosol Extinction in the Lower Troposphere by MAX-DOAS at a Rural Site in the North China Plain. Atmosphere 2020, 11, 1037. [Google Scholar] [CrossRef]
- Iqbal, A.; Ahmad, N.; Mohy ud Din, H.; Van Roozendael, M.; Anjum, M.S.; Zeeshan Ali Khan, M.; Khokhar, M.F. Retrieval of NO2 Columns by Exploiting MAX-DOAS Observations and Comparison with OMI and TROPOMI Data during the Time Period of 2015–2019. Aerosol Air Qual. Res. 2022, 22, 210398. [Google Scholar] [CrossRef]
- Hu, X.; Yang, G.; Liu, Y.; Lu, Y.; Wang, Y.; Chen, H.; Chen, J.; Wang, L. Atmospheric Gaseous Organic Acids in Winter in a Rural Site of the North China Plain. J. Environ. Sci. 2022, 113, 190–203. [Google Scholar] [CrossRef]
- Wang, Y.; Apituley, A.; Bais, A.; Beirle, S.; Benavent, N.; Borovski, A.; Bruchkouski, I.; Chan, K.L.; Donner, S.; Drosoglou, T.; et al. Inter-Comparison of MAX-DOAS Measurements of Tropospheric HONO Slant Column Densities and Vertical Profiles during the CINDI-2 Campaign. Atmos. Meas. Tech. 2020, 13, 5087–5116. [Google Scholar] [CrossRef]
- Laufs, S.; Cazaunau, M.; Stella, P.; Kurtenbach, R.; Cellier, P.; Mellouki, A.; Loubet, B.; Kleffmann, J. Diurnal Fluxes of HONO above a Crop Rotation. Atmos. Chem. Phys. 2017, 17, 6907–6923. [Google Scholar] [CrossRef]
- Gil, J.; Kim, J.; Lee, M.; Lee, G.; Lee, D.; Jung, J.; An, J.; Hong, J.; Cho, S.; Lee, J.; et al. The Role of HONO in O3 Formation and Insight into Its Formation Mechanism during the KORUS-AQ Campaign. Atmos. Chem. Phys. Dis. 2019, 2019, 1–30. [Google Scholar] [CrossRef]
- He, S.; Wang, S.; Zhang, S.; Zhu, J.; Sun, Z.; Xue, R.; Zhou, B. Vertical Distributions of Atmospheric HONO and the Corresponding OH Radical Production by Photolysis at the Suburb Area of Shanghai, China. Sci. Total Environ. 2023, 858, 159703. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.Y.; Ding, G.A.; Xu, X.B.; Xu, X.D.; Yu, H.Q.; Wang, S.F. Vertical Distributions of SO2 and NO2 in the Lower Atmosphere in Beijing Urban Areas, China. Sci. Total Environ. 2008, 390, 456–465. [Google Scholar] [CrossRef]
- Jin, J.; Ma, J.; Lin, W.; Zhao, H.; Shaiganfar, R.; Beirle, S.; Wagner, T. MAX-DOAS Measurements and Satellite Validation of Tropospheric NO2 and SO2 Vertical Column Densities at a Rural Site of North China. Atmos. Environ. 2016, 133, 12–25. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Hu, Q.; Xing, C.; Tan, W.; Liu, H.; Huang, Y.; Zhu, Y.; Zhang, J.; Geng, T.; et al. Evolution of the Vertical Structure of Air Pollutants during Winter Heavy Pollution Episodes: The Role of Regional Transport and Potential Sources. Atmos. Res. 2019, 228, 206–222. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF Based Source Apportionment of PM2.5 at a Regional Background Site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef]
- Li, L.; Qi, H.; Li, X. Composition, Source Apportionment, and Health Risk of PM2.5-Bound Metals during Winter Haze in Yuci College Town, Shanxi, China. Toxics 2022, 10, 467. [Google Scholar] [CrossRef]
- Xiao, C.; Chang, M.; Guo, P.; Gu, M.; Li, Y. Analysis of Air Quality Characteristics of Beijing–Tianjin–Hebei and Its Surrounding Air Pollution Transport Channel Cities in China. J. Environ. Sci. 2020, 87, 213–227. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Lian, C.; Yan, C.; Feng, Z.; Zheng, F.; Fan, X.; Chen, Y.; Wang, W.; Chu, B.; et al. The Promotion Effect of Nitrous Acid on Aerosol Formation in Wintertime in Beijing: The Possible Contribution of Traffic-Related Emissions. Atmos. Chem. Phys. 2020, 20, 13023–13040. [Google Scholar] [CrossRef]
- Cheng, N.; Li, Y.; Sun, F.; Chen, C.; Wang, B.; Li, Q.; Wei, P.; Cheng, B. Ground-Level NO2 in Urban Beijing: Trends, Distribution, and Effects of Emission Reduction Measures. Aerosol Air Qual. Res. 2018, 18, 343–356. [Google Scholar] [CrossRef]
- Ran, H.; An, J.; Zhang, J.; Huang, J.; Qu, Y.; Chen, Y.; Xue, C.; Mu, Y.; Liu, X. Impact of Soil–Atmosphere HONO Exchange on Concentrations of HONO and O3 in the North China Plain. Sci. Total Environ. 2024, 928, 172336. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Jin, J.; Ma, J.; Lv, J.; Liu, S.; Xu, X. Temporal Variation of NO2 and HCHO Vertical Profiles Derived from MAX-DOAS Observation in Summer at a Rural Site of the North China Plain and Ozone Production in Relation to HCHO/NO2 Ratio. Atmosphere 2022, 13, 860. [Google Scholar] [CrossRef]
- Nan, J.; Wang, S.; Guo, Y.; Xiang, Y.; Zhou, B. Study on the Daytime OH Radical and Implication for Its Relationship with Fine Particles over Megacity of Shanghai, China. Atmos. Environ. 2017, 154, 167–178. [Google Scholar] [CrossRef]
- Elshorbany, Y.F.; Kurtenbach, R.; Wiesen, P.; Lissi, E.; Rubio, M.; Villena, G.; Gramsch, E.; Rickard, A.R.; Pilling, M.J.; Kleffmann, J. Oxidation Capacity of the City Air of Santiago, Chile. Atmos. Chem. Phys. 2009, 9, 2257–2273. [Google Scholar] [CrossRef]
- Grainger, J.; Ring, J. Anomalous fraunhofer line profiles. Nature 1962, 193, 762. [Google Scholar] [CrossRef]
- Solomon, S.; Schmeltekopf, A.L.; Sanders, R.W. On the Interpretation of Zenith Sky Absorption Measurements. J. Geophys. Res. Atmos. 1987, 92, 8311–8319. [Google Scholar] [CrossRef]
- Platt, U.; Marquard, L.; Wagner, T.; Perner, D. Corrections for Zenith Scattered Light DOAS. Geophys. Res. Lett. 1997, 24, 1759–1762. [Google Scholar] [CrossRef]
- Aliwell, S.R.; Van Roozendael, M.; Johnston, P.V.; Richter, A.; Wagner, T.; Arlander, D.W.; Burrows, J.P.; Fish, D.J.; Jones, R.L.; Tørnkvist, K.K.; et al. Analysis for BrO in Zenith-Sky Spectra: An Intercomparison Exercise for Analysis Improvement. J. Geophys. Res. Atmos. 2002, 107, ACH 10-1. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Xie, Z.; Li, Y.; Huang, X.; Wang, S.; Xu, J.; Xie, P. A Paradox for Air Pollution Controlling in China Revealed by “APEC Blue” and “Parade Blue”. Sci. Rep. 2016, 6, 34408. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Sun, W.-Y. A One-Dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Jpn. Ser II 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J. Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model. In Proceedings of the 16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
Parameter | Data Source | Trace Gases | ||
---|---|---|---|---|
O4 | NO2 | HONO | ||
Wavelength Range (nm) | 338–370 | 338–370 | 335–373 | |
NO2 | 220 K, 298 K, I0-corrected * [54] | √ | √ | √ |
O3 | 223 K, 243 K, I0-corrected * [55] | √ | √ | √ |
O4 | 293 K [56] | √ | √ | √ |
HCHO | 298 K [57] | √ | √ | √ |
H2O | HITEMP [58] | ✕ | ✕ | √ |
BrO | 223 K [59] | √ | √ | √ |
HONO | 296 K [60] | ✕ | ✕ | √ |
Ring | Calculated with QDOAS | √ | √ | √ |
Polynomial degree | Order 5 | Order 5 | Order 5 | |
Intensity offset | Constant | Constant | Constant | |
Wavelength calibration | Based on a high resolution solar reference spectrum (SAO2010 solar spectral) [61] |
Pollutants | Average Extinction Coefficient (km−1) or Concentration (ppb) | Maximum Extinction Coefficient (km−1) or Concentration (ppb) | ||||||
---|---|---|---|---|---|---|---|---|
Surface | Lower Layer | Middle Layer | Upper Layer | Surface | Lower Layer | Middle Layer | Upper Layer | |
Aerosol | 0.358 | 0.370 | 0.342 | 0.161 | 0.722 | 0.929 | 0.629 | 0.357 |
NO2 | 1.659 | 1.926 | 0.150 | 0.040 | 3.958 | 4.353 | 0.554 | 0.049 |
HONO | 0.079 | 0.042 | 0.021 | 0.012 | 0.490 | 0.097 | 0.023 | 0.013 |
Cluster | Traj_Ratio | Aerosol Extinction (km−1) | Cluster | Traj_Ratio | NO2 (ppb) | |
---|---|---|---|---|---|---|
Mean ± S.D. | Mean ± S.D. | |||||
Bottom (50 m) | 1 | 18.71% | 0.262 ± 0.045 | 1 | 22.89% | 1.745 ± 0.262 |
2 | 37.74% | 0.356 ± 0.062 | 2 | 18.21% | 1.898 ± 0.325 | |
3 | 7.24% | 0.429 ± 0.081 | 3 | 31.20% | 1.859 ± 0.258 | |
4 | 36.29% | 0.405 ± 0.068 | 4 | 27.70% | 1.967 ± 0.313 | |
All | 100% | 0.358 ± 0.062 | All | 100% | 1.873 ± 0.281 | |
Lower (200 m) | 1 | 48.23% | 0.419 ± 0.063 | 1 | 41.33% | 2.098 ± 0.304 |
2 | 15.40% | 0.247 ± 0.040 | 2 | 13.76% | 1.527 ± 0.159 | |
3 | 13.08% | 0.172 ± 0.032 | 3 | 19.53% | 2.278 ± 0.302 | |
4 | 23.30% | 0.501 ± 0.102 | 4 | 25.39% | 2.236 ± 0.426 | |
All | 100% | 0.378 ± 0.058 | All | 100% | 2.091 ± 0.307 | |
Middle (600 m) | 1 | 27.11% | 0.190 ± 0.028 | 1 | 30.70% | 0.117 ± 0.020 |
2 | 28.29% | 0.367 ± 0.055 | 2 | 20.75% | 0.192 ± 0.035 | |
3 | 13.35% | 0.263 ± 0.042 | 3 | 36.29% | 0.118 ± 0.017 | |
4 | 31.24% | 0.377 ± 0.062 | 4 | 12.26% | 0.143 ± 0.031 | |
All | 100% | 0.315 ± 0.045 | All | 100% | 0.137 ± 0.026 | |
Upper (1000 m) | 1 | 20.23% | 0.108 ± 0.017 | 1 | 52.41% | 0.040 ± 0.006 |
2 | 22.94% | 0.108 ± 0.016 | 2 | 16.44% | 0.041 ± 0.018 | |
3 | 29.51% | 0.174 ± 0.021 | 3 | 9.22% | 0.042 ± 0.013 | |
4 | 27.32% | 0.129 ± 0.020 | 4 | 21.93% | 0.040 ± 0.021 | |
All | 100% | 0.138 ± 0.019 | All | 100% | 0.040 ± 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Hong, Q.; Tan, W.; Chen, J.; Li, T.; Wang, X.; Xue, J.; Fang, J.; Liu, C.; Tanvir, A.; et al. Spatiotemporal Distribution, Sources, and Impact on Atmospheric Oxidation of Reactive Nitrogen Oxides in the North China Plain Agricultural Regions in Summer. Remote Sens. 2024, 16, 3192. https://doi.org/10.3390/rs16173192
Wei S, Hong Q, Tan W, Chen J, Li T, Wang X, Xue J, Fang J, Liu C, Tanvir A, et al. Spatiotemporal Distribution, Sources, and Impact on Atmospheric Oxidation of Reactive Nitrogen Oxides in the North China Plain Agricultural Regions in Summer. Remote Sensing. 2024; 16(17):3192. https://doi.org/10.3390/rs16173192
Chicago/Turabian StyleWei, Shaocong, Qianqian Hong, Wei Tan, Jian Chen, Tianhao Li, Xiaohan Wang, Jingkai Xue, Jiale Fang, Chao Liu, Aimon Tanvir, and et al. 2024. "Spatiotemporal Distribution, Sources, and Impact on Atmospheric Oxidation of Reactive Nitrogen Oxides in the North China Plain Agricultural Regions in Summer" Remote Sensing 16, no. 17: 3192. https://doi.org/10.3390/rs16173192
APA StyleWei, S., Hong, Q., Tan, W., Chen, J., Li, T., Wang, X., Xue, J., Fang, J., Liu, C., Tanvir, A., Xing, C., & Liu, C. (2024). Spatiotemporal Distribution, Sources, and Impact on Atmospheric Oxidation of Reactive Nitrogen Oxides in the North China Plain Agricultural Regions in Summer. Remote Sensing, 16(17), 3192. https://doi.org/10.3390/rs16173192