Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Works
1.3. Research Objectives
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Ground Cover Data
2.2.2. Climate Data
2.2.3. Hydrological Data
2.2.4. Data Preparation
3. Methods
3.1. Overview of Methodology
3.2. Spatio-Temporal Models
3.2.1. ConvLSTM Model
3.2.2. PredRNN Model
3.3. Training Setup
3.3.1. Data Split for Different Training Scales
- GBRCA training: As Figure 1 shows, all data sequences in the training sites were used for training, validation sites for validation, and testing sites for testing. Therefore, there were 6400 data sequences used for training (50 sites × 128 data sequences). In this case, a single trained model was obtained for the entire GBRCA, and the model was applied to all sites in this region;
- Site-specific training: Instead of splitting the training, validation, and testing datasets according to sites, for each individual site, the 128 data sequences along the time series were split into 50% training, 25% validation, and the final 25% testing datasets. The model was specifically trained for the site.
3.3.2. Model Structure
3.3.3. Model Configuration
3.4. Model Evaluation
3.5. Performance Variation Analysis
3.6. GBRCA Ground Cover Prediction
4. Results
4.1. Model Evaluation
4.1.1. Single-Site Evaluation
4.1.2. Scoring Metrics for All Sites
4.2. Model Performance Comparison
4.2.1. Comparison of Different Models
4.2.2. Comparison of Different Training Scales
4.3. Model Performance Variation Analysis
4.4. GBRCA Next-Season Ground Cover Prediction
5. Discussion
5.1. Scalability
5.1.1. Impact of the Spatial Density of Training Sites
5.1.2. Time and Resources
5.2. Implications
5.3. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAOSTAT—Land Use. 2021. Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 27 August 2024).
- ABARES. Land Use of Australia 2010–11 to 2015–16, 250 m; ABARES: Canberra, Australia, 2022. [CrossRef]
- State of Queensland. Reef 2050 Water Quality Improvement Plan 2017–2022. 2018. Available online: https://www.reefplan.qld.gov.au/__data/assets/pdf_file/0017/46115/reef-2050-water-quality-improvement-plan-2017-22.pdf (accessed on 27 August 2024).
- Trimble, S.W.; Mendel, A.C. The cow as a geomorphic agent—A critical review. Geomorphology 1995, 13, 233–253. [Google Scholar] [CrossRef]
- Bartley, R.; Hawdon, A.; Post, D.A.; Roth, C.H. A sediment budget for a grazed semi-arid catchment in the Burdekin basin, Australia. Geomorphology 2007, 87, 302–321. [Google Scholar] [CrossRef]
- Risk, M.J. Assessing the effects of sediments and nutrients on coral reefs. Curr. Opin. Environ. Sustain. 2014, 7, 108–117. [Google Scholar] [CrossRef]
- Baird, M.E.; Mongin, M.; Skerratt, J.; Margvelashvili, N.; Tickell, S.; Steven, A.D.L.; Robillot, C.; Ellis, R.; Waters, D.; Kaniewska, P.; et al. Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system. Mar. Pollut. Bull. 2021, 167, 112297. [Google Scholar] [CrossRef]
- McCulloch, M.; Fallon, S.; Wyndham, T.; Hendy, E.; Lough, J.; Barnes, D. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 2003, 421, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef]
- Waterhouse, J.; Brodie, J.; Lewis, S.; Mitchell, A. Quantifying the sources of pollutants in the Great Barrier Reef catchments and the relative risk to reef ecosystems. Mar. Pollut. Bull. 2012, 65, 394–406. [Google Scholar] [CrossRef]
- McCloskey, G.L.; Baheerathan, R.; Dougall, C.; Ellis, R.; Bennett, F.R.; Waters, D.; Darr, S.; Fentie, B.; Hateley, L.R.; Askildsen, M. Modelled estimates of fine sediment and particulate nutrients delivered from the Great Barrier Reef catchments. Mar. Pollut. Bull. 2021, 165, 112163. [Google Scholar] [CrossRef]
- O’Mahoney, J.; Simes, R.; Redhill, D.; Heaton, K.; Atkinson, C.; Hayward, E.; Nguyen, M. At What Price? The Economic, Social and Icon Value of the Great Barrier Reef; Deloitte Access Economics: Sydney, Australia, 2017. [Google Scholar]
- Kroon, F.J.; Thorburn, P.; Schaffelke, B.; Whitten, S. Towards protecting the Great Barrier Reef from land-based pollution. Glob. Chang. Biol. 2016, 22, 1985–2002. [Google Scholar] [CrossRef]
- Coggan, A.; Thorburn, P.; Fielke, S.; Hay, R.; Smart, J.C. Motivators and barriers to adoption of Improved Land Management Practices. A focus on practice change for water quality improvement in Great Barrier Reef catchments. Mar. Pollut. Bull. 2021, 170, 112628. [Google Scholar] [CrossRef]
- Australian and Queensland Government. Grazing Water Quality Risk Framework 2017–2022; Australian and Queensland Government: Brisbane, Australia, 2020.
- Pickup, G. New land degradation survey techniques for arid Australia—Problems and prospects. Rangel. J. 1989, 11, 74–82. [Google Scholar] [CrossRef]
- O’Neill, A.L. Satellite-derived vegetation indices applied to semi-arid shrublands in Australia. Aust. Geogr. 1996, 27, 185–199. [Google Scholar] [CrossRef]
- Wallace, J.; Behn, G.; Furby, S. Vegetation condition assessment and monitoring from sequences of satellite imagery. Ecol. Manag. Restor. 2006, 7, S31–S36. [Google Scholar] [CrossRef]
- Jafari, R.; Lewis, M.M.; Ostendorf, B. Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia. Rangel. J. 2007, 29, 39–49. [Google Scholar] [CrossRef]
- Trevithick, R.; Scarth, P.; Tindall, D.; Denham, R.; Flood, N. Cover under Trees: RP64G Synthesis Report; Department of Science Information Technology, Innovation and the Arts: Brisbane, Australia, 2014. [Google Scholar]
- Scarth, P.; Röder, A.; Schmidt, M.; Denham, R. Tracking grazing pressure and climate interaction-the role of Landsat fractional cover in time series analysis. In Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference, Alice Springs, Australia, 13–17 September 2010. [Google Scholar]
- Barnetson, J.; Phinn, S.; Scarth, P.; Denham, R. Assessing Landsat Fractional Ground-Cover Time Series across Australia’s Arid Rangelands: Separating Grazing Impacts from Climate Variability. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-3/W2, 15–26. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Beutel, T.S.; Shepherd, R.; Karfs, R.A.; Abbott, B.N.; Eyre, T.; Hall, T.J.; Barbi, E. Is ground cover a useful indicator of grazing land condition? Rangel. J. 2021, 43, 55–64. [Google Scholar] [CrossRef]
- Queensland Government. Reef Protection Regulations. 2022. Available online: https://www.qld.gov.au/environment/agriculture/sustainable-farming/reef/reef-regulations/about (accessed on 27 August 2024).
- Navin, M.S.; Agilandeeswari, L. Multispectral and hyperspectral images based land use/land cover change prediction analysis: An extensive review. Multimed. Tools Appl. 2020, 79, 29751–29774. [Google Scholar] [CrossRef]
- Barrett, A.B.; Duivenvoorden, S.; Salakpi, E.E.; Muthoka, J.M.; Mwangi, J.; Oliver, S.; Rowhani, P. Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya. Remote Sens. Environ. 2020, 248, 111886. [Google Scholar] [CrossRef]
- Queensland Government. FORAGE REPORT: Pasture Growth Alert. 2021. Available online: https://www.longpaddock.qld.gov.au/forage/report-information/pasture-growth-alert/ (accessed on 27 August 2024).
- Zhang, B.; Carter, J. FORAGE—An online system for generating and delivering property-scale decision support information for grazing land and environmental management. Comput. Electron. Agric. 2018, 150, 302–311. [Google Scholar] [CrossRef]
- Xie, Z.; Phinn, S.R.; Game, E.T.; Pannell, D.J.; Hobbs, R.J.; Briggs, P.R.; McDonald-Madden, E. Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands—A first step towards identifying degraded lands for conservation. Remote Sens. Environ. 2019, 232, 111317. [Google Scholar] [CrossRef]
- von Keyserlingk, J.; de Hoop, M.; Mayor, A.G.; Dekker, S.C.; Rietkerk, M.; Foerster, S. Resilience of vegetation to drought: Studying the effect of grazing in a Mediterranean rangeland using satellite time series. Remote Sens. Environ. 2021, 255, 112270. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, Y.; Jiang, R.; Zhang, M.; Hammer, G.; Chapman, S.; Brider, J.; Potgieter, A.B. Seasonal dynamics of fallow and cropping lands in the broadacre cropping region of Australia. Remote Sens. Environ. 2024, 305, 114070. [Google Scholar] [CrossRef]
- Song, Y.; Kalacska, M.; Gašparović, M.; Yao, J.; Najibi, N. Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103300. [Google Scholar] [CrossRef]
- Sun, S.; Mu, L.; Feng, R.; Wang, L.; He, J. GAN-Based LUCC Prediction via the Combination of Prior City Planning Information and Land-Use Probability. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10189–10198. [Google Scholar] [CrossRef]
- Yubo, Z.; Zhuoran, Y.; Jiuchun, Y.; Yuanyuan, Y.; Dongyan, W.; Yucong, Z.; Fengqin, Y.; Lingxue, Y.; Liping, C.; Shuwen, Z. A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China. Remote Sens. 2020, 12, 3314. [Google Scholar] [CrossRef]
- Wang, J.; Yin, X.; Liu, S.; Wang, D. Spatiotemporal change and prediction of land use in Manasi region based on deep learning. Environ. Sci. Pollut. Res. 2023, 30, 82780–82794. [Google Scholar] [CrossRef] [PubMed]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition; MIT Press: Cambridge, MA, USA, 1985; Volume 1. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Freeman, B.S.; Taylor, G.; Gharabaghi, B.; Thé, J. Forecasting air quality time series using deep learning. J. Air Waste Manag. Assoc. 2018, 68, 866–886. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM Model for Sea Surface Temperature Prediction. IEEE Geosci. Remote Sens. Lett. 2018, 15, 207–211. [Google Scholar] [CrossRef]
- Reddy, D.S.; Prasad, P.R.C. Prediction of vegetation dynamics using NDVI time series data and LSTM. Model. Earth Syst. Environ. 2018, 4, 409–419. [Google Scholar] [CrossRef]
- Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887. [Google Scholar]
- Wu, T.; Feng, F.; Lin, Q.; Bai, H. A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands. Int. J. Remote Sens. 2020, 41, 2359–2373. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 1, 802–810. [Google Scholar]
- Boulila, W.; Ghandorh, H.; Khan, M.A.; Ahmed, F.; Ahmad, J. A novel CNN-LSTM-based approach to predict urban expansion. Ecol. Inform. 2021, 64, 101325. [Google Scholar] [CrossRef]
- Diaconu, C.-A.; Saha, S.; Günnemann, S.; Zhu, X.X. Understanding the Role of Weather Data for Earth Surface Forecasting Using a ConvLSTM-Based Model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Sefrin, O.; Riese, F.M.; Keller, S. Deep Learning for Land Cover Change Detection. Remote Sens. 2021, 13, 78. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Y.; Moncrieff, G.R.; Slingsby, J.A.; Wilson, A.M.; Maitner, B.; Zhenqi Zhou, R. Forecasting vegetation dynamics in an open ecosystem by integrating deep learning and environmental variables. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103060. [Google Scholar] [CrossRef]
- Kladny, K.-R.; Milanta, M.; Mraz, O.; Hufkens, K.; Stocker, B.D. Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data. Ecol. Inform. 2024, 80, 102474. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.; Long, M. Predrnn: A recurrent neural network for spatiotemporal predictive learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2208–2225. [Google Scholar] [CrossRef]
- Yu, W.; Lu, Y.; Easterbrook, S.; Fidler, S. Efficient and information-preserving future frame prediction and beyond. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Liu, Z.-x.; Zhang, D.-g.; Luo, G.-z.; Lian, M.; Liu, B. A new method of emotional analysis based on CNN–BiLSTM hybrid neural network. Clust. Comput. 2020, 23, 2901–2913. [Google Scholar] [CrossRef]
- Wang, J.; Jaboyedoff, M.; Chen, G.; Luo, X.; Derron, M.-H.; Hu, Q.; Fei, L.; Prajapati, G.; Choanji, T.; Luo, S.; et al. Landslide susceptibility prediction and mapping using the LD-BiLSTM model in seismically active mountainous regions. Landslides 2024, 21, 17–34. [Google Scholar] [CrossRef]
- Kim, I.-S.; Latif, K.; Kim, J.; Sharafat, A.; Lee, D.-E.; Seo, J. Vision-Based Activity Classification of Excavators by Bidirectional LSTM. Appl. Sci. 2023, 13, 272. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, X.; Wang, H.; Zhu, Y.; Wang, Y.; Li, M.; Yeung, D.-Y. Earthformer: Exploring space-time transformers for earth system forecasting. arXiv 2022, arXiv:2207.05833. [Google Scholar]
- Queensland Government. Land Use Mapping—2021—Great Barrier Reef NRM Regions. 2021. Available online: https://www.data.qld.gov.au/dataset/2021_great_barrier_reef_land_use (accessed on 27 August 2024).
- Naga Rajesh, A.; Abinaya, S.; Purna Durga, G.; Lakshmi Kumar, T.V. Long-term relationships of MODIS NDVI with rainfall, land surface temperature, surface soil moisture and groundwater storage over monsoon core region of India. Arid Land Res. Manag. 2023, 37, 51–70. [Google Scholar] [CrossRef]
- Bartley, R.; Roth, C.H.; Ludwig, J.; McJannet, D.; Liedloff, A.; Corfield, J.; Hawdon, A.; Abbott, B. Runoff and erosion from Australia’s tropical semi-arid rangelands: Influence of ground cover for differing space and time scales. Hydrol. Process. 2006, 20, 3317–3333. [Google Scholar] [CrossRef]
- Turnbull, L.; Wainwright, J.; Brazier, R.E. A conceptual framework for understanding semi-arid land degradation: Ecohydrological interactions across multiple-space and time scales. Ecohydrology 2008, 1, 23–34. [Google Scholar] [CrossRef]
- Department of Environment and Science, Queensland Government. Seasonal Ground Cover—Landsat, JRSRP Algorithm, Australia Coverage (Version 1.0.0). Terrestrial Ecosystem Research Network. 2021. Available online: https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/65878a57-f1b0-4e6b-8e7a-8a38ebe7960e (accessed on 27 August 2024).
- Joint Remote Sensing Research Program. Seasonal Fractional Cover—Landsat, JRSRP Algorithm, Australia Coverage (Version 1.0.0). Terrestrial Ecosystem Research Network. 2021. Available online: https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/f0c32576-9ad7-4c9c-9aa9-22787867e28b (accessed on 27 August 2024).
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Jones, D.; Wang, W.; Fawcett, R.J.B. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Wang, J.; Zeng, H.; Zhou, F. Prediction of Air Pollutant Concentration Based on One-Dimensional Multi-Scale CNN-LSTM Considering Spatial-Temporal Characteristics: A Case Study of Xi’an, China. Atmosphere 2021, 12, 1626. [Google Scholar] [CrossRef]
- Bureau of Meteorology Australian Government. Australian Landscape Water Balance. 2022. Available online: https://awo.bom.gov.au/products/historical/soilMoisture-rootZone/4.5,-27.564,134.221/nat,-25.609,134.362/r/d/2022-10-31 (accessed on 27 August 2024).
- Frost, A.; Shokri, A. The Australian Landscape Water Balance Model (AWRA-L v7); Technical Description of the Australian Water Resources Assessment Landscape Model Version, 6; The Australian Bureau of Meteorology: Melbourne, Australia, 2021.
- Bengio, S.; Vinyals, O.; Jaitly, N.; Shazeer, N. Scheduled sampling for sequence prediction with recurrent neural networks. Adv. Neural Inf. Process. Syst. 2015, 1, 1171–1179. [Google Scholar]
- Huber, P.J. Robust Estimation of a Location Parameter. In Breakthroughs in Statistics: Methodology and Distribution; Kotz, S., Johnson, N.L., Eds.; Springer: New York, NY, USA, 1992; pp. 492–518. [Google Scholar]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Bastin, G.; Scarth, P.; Chewings, V.; Sparrow, A.; Denham, R.; Schmidt, M.; O’Reagain, P.; Shepherd, R.; Abbott, B. Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method. Remote Sens. Environ. 2012, 121, 443–457. [Google Scholar] [CrossRef]
- Xu, L.; Cai, R.; Yu, H.; Du, W.; Chen, Z.; Chen, N. Monthly NDVI Prediction Using Spatial Autocorrelation and Nonlocal Attention Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3425–3437. [Google Scholar] [CrossRef]
- Kartal, S.; Iban, M.C.; Sekertekin, A. Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series. Environ. Sci. Pollut. Res. 2024, 31, 18932–18948. [Google Scholar] [CrossRef]
Channel | Data | Category | Data Type | Whether in Output |
---|---|---|---|---|
1 | Ground cover | Target feature | Float | Yes |
2 | Ground cover mask | Mask | Binary | No |
3 | Rainfall | Auxiliary | Float | No |
4 | Temperature | Auxiliary | Float | No |
5 | Soil moisture | Auxiliary | Float | No |
6 | Runoff | Auxiliary | Float | No |
Model | MAE | SSIM | MAE_Decay | SSIM_Decay |
---|---|---|---|---|
PredRNN | 4.41 | 0.66 | 0.21 | −0.018 |
ConvLSTM | 4.72 | 0.64 | 0.19 | −0.015 |
Seasons | MAE | SSIM | Ground Cover (%) |
---|---|---|---|
Summer (DEC–FEB) | 5.43 | 0.75 | 82.27 |
Autum (MAR–JUN) | 4.40 | 0.61 | 88.64 |
Winter (JUL–AUG) | 3.91 | 0.63 | 88.65 |
Spring (SEP–NOV) | 4.84 | 0.71 | 82.06 |
Model Name | GPU Memory | Epoch to Achieve Optimum | Training Time to Achieve Optimum (Hours) | Average Time per Epoch (Hour/Epoch) |
---|---|---|---|---|
ConvLSTM | 16 GB | 210 | 137 | 0.65 |
PredRNN | 32 GB | 9 | 45 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Turner, R.D.R.; McMahon, J.M.; Correa, D.F.; Chamberlain, D.A.; Warne, M.S.J. Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments. Remote Sens. 2024, 16, 3193. https://doi.org/10.3390/rs16173193
Mao Y, Turner RDR, McMahon JM, Correa DF, Chamberlain DA, Warne MSJ. Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments. Remote Sensing. 2024; 16(17):3193. https://doi.org/10.3390/rs16173193
Chicago/Turabian StyleMao, Yongjing, Ryan D. R. Turner, Joseph M. McMahon, Diego F. Correa, Debbie A. Chamberlain, and Michael St. J. Warne. 2024. "Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments" Remote Sensing 16, no. 17: 3193. https://doi.org/10.3390/rs16173193
APA StyleMao, Y., Turner, R. D. R., McMahon, J. M., Correa, D. F., Chamberlain, D. A., & Warne, M. S. J. (2024). Predicting Ground Cover with Deep Learning Models—An Application of Spatio-Temporal Prediction Methods to Satellite-Derived Ground Cover Maps in the Great Barrier Reef Catchments. Remote Sensing, 16(17), 3193. https://doi.org/10.3390/rs16173193