The Spatiotemporal Surface Velocity Variations and Analysis of the Amery Ice Shelf from 2000 to 2022, East Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inter-Annual Surface Velocity between 2000 and 2022
2.2. Intra-Annual Surface Velocity between 2017 and 2022
2.2.1. The Surface Velocity Derived from Offset Tracking
2.2.2. The Surface Velocity Derived from DInSAR
2.2.3. Combination of the DInSAR Range Surface Velocity and Offset-Tracking Azimuth Surface Velocity
2.3. Ocean Temperatures
2.4. Fast-Ice Area and Thickness
2.5. Thickness of the Amery Ice Shelf
3. Results
3.1. Assessment of the Accuracy of Annual Mean Surface Velocity
3.2. Assessment of the Accuracy of Monthly Average Surface Velocity
3.3. Inter-Annual Variation in Surface Velocity from 2000 to 2022
3.4. Seasonal Variation in Surface Velocity from 2017 to 2021
4. Discussion
4.1. Analysis of Factors of Inter-Annual Variation in Surface Velocity
4.2. Effect of Fast-Ice on Variations in Intra-Annual Surface Velocity
4.3. Effect of Ocean Temperatures on Seasonal Variations in Surface Velocity
4.4. Effect of Ice Shelf Calving on Variation in Surface Velocity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Q.; Wang, H.; Shum, C.K.; Jiang, L.; Hsu, H.T.; Dong, J. Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Sci. Rep. 2018, 8, 4477. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; van den Broeke, M.; Nilsson, J. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef]
- Völz, V.; Hinkel, J. Sea Level Rise Learning Scenarios for Adaptive Decision-Making Based on IPCC AR6. Earth’s Future 2023, 11, e2023EF003662. [Google Scholar] [CrossRef]
- Aoki, S.; Takahashi, T.; Yamazaki, K.; Hirano, D.; Ono, K.; Kusahara, K.; Tamura, T.; Williams, G.D. Warm surface waters increase Antarctic ice shelf melt and delay dense water formation. Commun. Earth Environ. 2022, 3, 142–150. [Google Scholar] [CrossRef]
- Jacobs, S.; Giulivi, C.; Dutrieux, P.; Rignot, E.; Nitsche, F.; Mouginot, J. Getz Ice Shelf melting response to changes in ocean forcing. J. Geophys. Res. Ocean. 2013, 118, 4152–4168. [Google Scholar] [CrossRef]
- Lei, Y.; Gardner, A.; Agram, P. Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement. Remote Sens. 2021, 13, 749. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, H.; Shum, C.K.; Jiang, L.; Hsu, H.; Gao, F.; Zhao, Y. Antarctic-wide annual ice flow maps from Landsat 8 imagery between 2013 and 2019. Int. J. Digit. Earth 2020, 14, 597–618. [Google Scholar] [CrossRef]
- Dirscherl, M.; Dietz, A.J.; Dech, S.; Kuenzer, C. Remote sensing of ice motion in Antarctica—A review. Remote Sens. Environ. 2020, 237, 111595. [Google Scholar] [CrossRef]
- Joughin, I.; Smith, B.E.; Abdalati, W. Glaciological advances made with interferometric synthetic aperture radar. J. Glaciol. 2017, 56, 1026–1042. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef]
- Wang, X.; Holland, D.M. An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica. Remote Sens. 2020, 12, 1175. [Google Scholar] [CrossRef]
- Mouginot, J.; Scheuchl, B.; Rignot, E. Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data. Remote Sens. 2012, 4, 2753–2767. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Jeong, S. Changes in Antarctic Ice Sheet Motion Derived From Satellite Radar Interferometry Between 1995 and 2022. Geophys. Res. Lett. 2022, 49, e2022GL100141. [Google Scholar] [CrossRef]
- Jawak, S.D.; Kumar, S.; Luis, A.J.; Pandit, P.H.; Wankhede, S.F.; Anirudh, T.S. Seasonal Comparison of Velocity of the Eastern Tributary Glaciers, Amery Ice Shelf, Antarctica, Using Sar Offset Tracking. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019; IV-2/W5, 595–600. [Google Scholar] [CrossRef]
- Schubert, A.; Faes, A.; Kääb, A.; Meier, E. Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet- vs. correlation-based image matching. ISPRS J. Photogramm. Remote Sens. 2013, 82, 49–62. [Google Scholar] [CrossRef]
- Fanghui, D.; Chunxia, Z.; Zemin, W.; Chen, D.; Xin, Z. Ice-flow Velocity Derivation of the Confluence Zone of the Amery Ice Shelf Using Offset-tracking Method. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 901–908. [Google Scholar]
- Manson, R.; Coleman, R.; Morgan, P.; King, M. Ice velocities of the Lambert Glacier from static GPS observations. Earth Planets Space 2000, 52, 6. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, Q.; Chen, Y.; Lei, H.; Fu, Z.; Zheng, L.; Liu, R. Mass Balance Assessment of the Amery Ice Shelf Basin, East Antarctica. Earth Space Sci. 2019, 6, 1987–1999. [Google Scholar] [CrossRef]
- Tong, X.; Liu, S.; Li, R.; Xie, H.; Liu, S.; Qiao, G.; Feng, T.; Tian, Y.; Ye, Z. Multi-track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica. Remote Sens. Environ. 2018, 204, 122–137. [Google Scholar] [CrossRef]
- Chi, Z.; Klein, A.G. Inter- and Intra-annual Surface Velocity Variations at the Southern Grounding Line of Amery Ice Shelf from 2014 to 2018. Cryosphere Discuss. 2020; preprint. [Google Scholar] [CrossRef]
- Liang, Q.I.; Zhou, C.; Howat, I.M.; Jeong, S.; Liu, R.; Chen, Y. Ice flow variations at Polar Record Glacier, East Antarctica. J. Glaciol. 2019, 65, 279–287. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, Y.; Deng, F.; Ai, S.; Wang, Z.; E, D. Seasonal and interannual ice velocity changes of Polar Record Glacier, East Antarctica. Ann. Glaciol. 2017, 55, 45–51. [Google Scholar] [CrossRef]
- Walker, C.C.; Becker, M.K.; Fricker, H.A. A High Resolution, Three-Dimensional View of the D-28 Calving Event From Amery Ice Shelf With ICESat-2 and Satellite Imagery. Geophys. Res. Lett. 2021, 48, e2020GL091200. [Google Scholar] [CrossRef]
- Galton-Fenzi, B.K.; Hunter, J.R.; Coleman, R.; Marsland, S.J.; Warner, R.C. Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res. Ocean. 2012, 117, C09031. [Google Scholar] [CrossRef]
- Lei, Y.; Gardner, A.S.; Agram, P. Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products. Earth Syst. Sci. Data 2022, 14, 5111–5137. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Continent-Wide, Interferometric SAR Phase, Mapping of Antarctic Ice Velocity. Geophys. Res. Lett. 2019, 46, 9710–9718. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.; An, J.; Zhang, B.; Geng, H.; Ma, Y.; Li, M.; Qian, Y. Ionospheric Phase Compensation for InSAR Measurements Based on the Faraday Rotation Inversion Method. Sensors 2020, 20, 6877. [Google Scholar] [CrossRef]
- Liao, H.; Meyer, F.J.; Scheuchl, B.; Mouginot, J.; Joughin, I.; Rignot, E. Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sens. Environ. 2018, 209, 166–180. [Google Scholar] [CrossRef]
- Liang, C.; Agram, P.; Simons, M.; Fielding, E.J. Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6755–6773. [Google Scholar] [CrossRef]
- Kamel Hasni, J.C.; Wei, G. Correcting Ionospheric and Orbital Errors in Spaceborne SAR Differential Interferograms. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017. [Google Scholar]
- Ma, Y.; Wang, Z.; Li, F.; Liu, S.; An, J.; Li, B.; Ma, W. Ionospheric Correction of L-Band SAR Interferometry for Accurate Ice-Motion Measurements: A Case Study in the Grove Mountains Area, East Antarctica. Remote Sens. 2022, 14, 556. [Google Scholar] [CrossRef]
- Kumar, V.V.; Parkinson, M.L. A global scale picture of ionospheric peak electron density changes during geomagnetic storms. Space Weather 2017, 15, 637–652. [Google Scholar] [CrossRef]
- Consortium, E.; Fukumori, I.; Wang, O.; Fenty, I.; Forget, G.; Heimbach, P.; Ponte, R. Synopsis of the ECCO Central Production Global Ocean and Sea-Ice State Estimate, Version 4 Release 4, Zenodo [Data Set]. 2021. Available online: https://openpolar.no/Record/ftdatacite:10.5281%2Fzenodo.3765928 (accessed on 9 May 2024).
- Fukumori, I.; Fenty, I.G.; Forget, G.; Heimbach, P.; King, C.; Nguyen, A.T.; Piecuch, C.G.; Ponte, R.M.; Vinogradov, N.; Wang, O. Data sets used in ECCO Version 4 Release 3. 2019. Available online: https://dspace.mit.edu/handle/1721.1/120472 (accessed on 9 May 2024).
- Zhao, J.; Cheng, B.; Vihma, T.; Heil, P.; Hui, F.; Shu, Q.; Zhang, L.; Yang, Q. Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz Bay, East Antarctica: An operational service for CHINARE. Ann. Glaciol. 2020, 61, 271–283. [Google Scholar] [CrossRef]
- Gomez-Fell, R.; Rack, W.; Purdie, H.; Marsh, O. Parker Ice Tongue Collapse, Antarctica, Triggered by Loss of Stabilizing Land-Fast Sea Ice. Geophys. Res. Lett. 2022, 49, e2021GL096156. [Google Scholar] [CrossRef]
- Li, X.; Shokr, M.; Hui, F.; Chi, Z.; Heil, P.; Chen, Z.; Yu, Y.; Zhai, M.; Cheng, X. The spatio-temporal patterns of landfast ice in Antarctica during 2006–2011 and 2016–2017 using high-resolution SAR imagery. Remote Sens. Environ. 2020, 242, 111736. [Google Scholar] [CrossRef]
- Hoppmann, M.; Nicolaus, M.; Hunkeler, P.A.; Heil, P.; Behrens, L.K.; König-Langlo, G.; Gerdes, R. Seasonal evolution of an ice-shelf influenced fast-ice regime, derived from an autonomous thermistor chain. J. Geophys. Res. Ocean. 2015, 120, 1703–1724. [Google Scholar] [CrossRef]
- Mallett, R.D.C.; Stroeve, J.C.; Tsamados, M.; Landy, J.C.; Willatt, R.; Nandan, V.; Liston, G.E. Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover. Cryosphere 2021, 15, 2429–2450. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Liu, B.; Xie, H.; Ozsoy-Cicek, B. Deriving Antarctic Sea-Ice Thickness From Satellite Altimetry and Estimating Consistency for NASA’s ICESat/ICESat-2 Missions. Geophys. Res. Lett. 2021, 48, e2021GL0934250. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; An, J.; Yan, B.; Liu, M.; Wu, S. Antarctic Ice Shelves Surface Elevation, Thickness and Basal Mass Balance (1991–2020); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Nitsche, F.O.; Gohl, K.; Larter, R.D.; Hillenbrand, C.D.; Kuhn, G.; Smith, J.A.; Jacobs, S.; Anderson, J.B.; Jakobsson, M. Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica. Cryosphere 2013, 7, 249–262. [Google Scholar] [CrossRef]
- Herraiz-Borreguero, L.; Church, J.A.; Allison, I.; Peña-Molino, B.; Coleman, R.; Tomczak, M.; Craven, M. Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica. J. Geophys. Res. Ocean. 2016, 121, 4946–4965. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; An, H.; Han, H. Ice Velocity Variations of the Cook Ice Shelf, East Antarctica, from 2017 to 2022 from Sentinel-1 SAR Time-Series Offset Tracking. Remote Sens. 2023, 15, 3079. [Google Scholar] [CrossRef]
- Han, H.; Im, J.; Kim, H.-c. Variations in ice velocities of Pine Island Glacier Ice Shelf evaluated using multispectral image matching of Landsat time series data. Remote Sens. Environ. 2016, 186, 358–371. [Google Scholar] [CrossRef]
- Scambos, T.A.; Bohlander, J.A.; Shuman, C.A.; Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 2004, 31, L18402. [Google Scholar] [CrossRef]
- Herraiz-Borreguero, L.; Coleman, R.; Allison, I.; Rintoul, S.R.; Craven, M.; Williams, G.D. Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Ocean. 2015, 120, 3098–3112. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Cheng, C.; Wu, Y.; Xia, R.; Li, B.; Li, X. On the Modified Circumpolar Deep Water Upwelling Over the Four Ladies Bank in Prydz Bay, East Antarctica. J. Geophys. Res. Ocean. 2018, 123, 7819–7838. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Cheng, C.; Xia, R.; Li, B.; Xie, Z. Modeling modified Circumpolar Deep Water intrusions onto the Prydz Bay continental shelf, East Antarctica. J. Geophys. Res. Ocean. 2017, 122, 5198–5217. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, C.; Qian, Y.; Chen, G.; Zhu, D.; Zhu, Y.; Liu, Y. Basal Channel System and Polynya Effect on a Regional Air-Ice-Ocean-Biology Environment System in the Prydz Bay, East Antarctica. J. Geophys. Res. Earth Surf. 2023, 128, e2023JF007286. [Google Scholar] [CrossRef]
- Davies, B.J.; Carrivick, J.L.; Glasser, N.F.; Hambrey, M.J.; Smellie, J.L. Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. Cryosphere 2012, 6, 1031–1048. [Google Scholar] [CrossRef]
- Francis, D.; Mattingly, K.S.; Lhermitte, S.; Temimi, M.; Heil, P. Atmospheric extremes triggered the biggest calving event in more than 50 years at the Amery Ice shelf in September 2019. Cryosphere 2021, 15, 2147–2165. [Google Scholar] [CrossRef]
- Gudmundsson, G.H. Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere 2013, 7, 647–655. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Cheng, X. Recent and imminent calving events do little to impair Amery ice shelf’s stability. Acta Oceanol. Sin. 2020, 39, 168–170. [Google Scholar] [CrossRef]
- Fürst, J.J.; Durand, G.; Gillet-Chaulet, F.; Tavard, L.; Rankl, M.; Braun, M.; Gagliardini, O. The safety band of Antarctic ice shelves. Nat. Clim. Chang. 2016, 6, 479–482. [Google Scholar] [CrossRef]
Points | R1 (m/yr) | R2 (m/yr) | R3 (m/yr) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | (1) | (2) | (3) | MEaSUREs | (1) | (2) | (3) | MEaSUREs | (1) | (2) | (3) | MEaSUREs |
Mean | 1.77 | 0.25 | 2.8 | 1.74 | 1.84 | 0.20 | 3.2 | 1.16 | 1.68 | 0.28 | 3.82 | 1.43 |
Standard | 1.81 | 0.28 | 1.28 | 0.23 | 1.73 | 0.21 | 2.03 | 0.16 | 1.75 | 0.15 | 2.56 | 0.17 |
Monitoring Point | Maximum (m/yr) | Minimum (m/yr) | Magnitude (m/yr) |
---|---|---|---|
LG0 | 122.1 | 119.7 | 2.4 |
LG1 | 397.5 | 394.8 | 2.7 |
LG2 | 786.3 | 768.2 | 18.1 |
LG3 | 398.2 | 409.64 | 11.5 |
LG4 | 368.8 | 363.5 | 12.7 |
LG5 | 362.1 | 350.1 | 12.0 |
LG6 | 399.2 | 387.3 | 11.9 |
LG7 | 1246.6 | 1076.1 | 170.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, Z.; Zhang, B.; An, J.; Geng, H.; Li, F. The Spatiotemporal Surface Velocity Variations and Analysis of the Amery Ice Shelf from 2000 to 2022, East Antarctica. Remote Sens. 2024, 16, 3255. https://doi.org/10.3390/rs16173255
Ma Y, Wang Z, Zhang B, An J, Geng H, Li F. The Spatiotemporal Surface Velocity Variations and Analysis of the Amery Ice Shelf from 2000 to 2022, East Antarctica. Remote Sensing. 2024; 16(17):3255. https://doi.org/10.3390/rs16173255
Chicago/Turabian StyleMa, Yuanyuan, Zemin Wang, Baojun Zhang, Jiachun An, Hong Geng, and Fei Li. 2024. "The Spatiotemporal Surface Velocity Variations and Analysis of the Amery Ice Shelf from 2000 to 2022, East Antarctica" Remote Sensing 16, no. 17: 3255. https://doi.org/10.3390/rs16173255
APA StyleMa, Y., Wang, Z., Zhang, B., An, J., Geng, H., & Li, F. (2024). The Spatiotemporal Surface Velocity Variations and Analysis of the Amery Ice Shelf from 2000 to 2022, East Antarctica. Remote Sensing, 16(17), 3255. https://doi.org/10.3390/rs16173255