Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Framework Development
2.2.1. Data Collection
Field Data
Remote Sending Data
2.2.2. Feature Engineering
2.2.3. Predictive Modeling
2.2.4. Performance Metrics
2.2.5. Framework Case Study
3. Results
3.1. Biomass Statistics
3.2. Feature Selection
3.3. Model Development
3.4. Case Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elfanssi, S.; Ouazzani, N.; Mandi, L. Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric. Water Manag. 2018, 202, 231–240. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Pang, X.P.; Xu, H.P.; Wang, J.; Zhang, W.N.; Guo, Z.G. Effect of partial root-zone drying irrigation (PRDI) on the biomass, water productivity and carbon, nitrogen and phosphorus allocations in different organs of alfalfa. Agric. Water Manag. 2021, 243, 106525. [Google Scholar] [CrossRef]
- Arshad, M.; Feyissa, B.A.; Amyot, L.; Aung, B.; Hannoufa, A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 2017, 258, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Avci, M.A.; Ozkose, A.; Tamkoc, A. Determination of yield and quality characteristics of alfalfa (Medicago sativa L.) varieties grown in different locations. J. Anim. Vet. Adv. 2013, 12, 487–490. [Google Scholar]
- Noland, R.L.; Wells, M.S.; Coulter, J.A.; Tiede, T.; Baker, J.M.; Martinson, K.L.; Sheaffer, C.C. Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Res. 2018, 222, 189–196. [Google Scholar] [CrossRef]
- Oates, L.G.; Undersander, D.J.; Gratton, C.; Bell, M.M.; Jackson, R.D. Management-intensive rotational grazing enhances forage production and quality of subhumid cool-season pastures. Crop Sci. 2011, 51, 892–901. [Google Scholar] [CrossRef]
- Caddel, J.; Stritzke, J.; Berberet, R.; Bolin, P.; Huhnke, R.; Johnson, G.; Cuperus, G. Alfalfa Production Guide for the Southern Great Plains. 2001, 71, E-826. Available online: https://extension.okstate.edu/fact-sheets/print-publications/e/e-826-2018.pdf (accessed on 28 August 2024).
- Gou, J.; Debnath, S.; Sun, L.; Flanagan, A.; Tang, Y.; Jiang, Q.; Wen, J.; Wang, Z. From model to crop: Functional characterization of SPL 8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 2018, 16, 951–962. [Google Scholar] [CrossRef]
- Lorenzo, C.D.; García-Gagliardi, P.; Antonietti, M.S.; Sánchez-Lamas, M.; Mancini, E.; Dezar, C.A.; Vazquez, M.; Watson, G.; Yanovsky, M.J.; Cerdán, P.D. Improvement of alfalfa forage quality and management through the down-regulation of Ms FT a1. Plant Biotechnol. J. 2020, 18, 944–954. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.V.K. Drought stress responses in non-transgenic and transgenic alfalfa—Current status and future research directions. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 170, pp. 35–100. [Google Scholar] [CrossRef]
- Katanski, S.; Milić, D.; Vasiljević, S.; Milošević, B.; Živanov, D.; Ćupina, B. Dry matter yield and plant density of alfalfa as affected by cutting schedule and seeding rate. In Proceedings of the 27th General Meeting of the European Grassland Federation “Sustainable Meat and Milk Production from Grasslands”, Cork, Ireland, 17–21 June 2018; Teagasc, Animal and Grassland Research and Innovation Centre: Cork, Ireland, 2018; Volume 23, pp. 265–267. [Google Scholar]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; Van De Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Song, X.P.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Wang, X.; Lei, H.; Li, J.; Huo, Z.; Zhang, Y.; Qu, Y. Estimating evapotranspiration and yield of wheat and maize croplands through a remote sensing-based model. Agric. Water Manag. 2023, 282, 108294. [Google Scholar] [CrossRef]
- Whitmire, C.D.; Vance, J.M.; Rasheed, H.K.; Missaoui, A.; Rasheed, K.M.; Maier, F.W. Using Machine Learning and Feature Selection for Alfalfa Yield Prediction. AI 2021, 2, 71–88. [Google Scholar] [CrossRef]
- Sivasankar, T.; Lone, J.M.; Sarma, K.K.; Qadir, A.; Raju, P.L.N. Estimation of Above Ground Biomass Using Support Vector Machines and ALOS/PALSAR data. Vietnam J. Earth Sci. 2019, 41, 95–104. [Google Scholar] [CrossRef]
- Hernandez, C.M.; Correndo, A.; Kyveryga, P.; Prestholt, A.; Ciampitti, I.A. On-farm soybean seed protein and oil prediction using satellite data. Comput. Electron. Agric. 2023, 212, 108096. [Google Scholar] [CrossRef]
- Xu, J.; Quackenbush, L.J.; Volk, T.A.; Im, J. Forest and Crop Leaf Area Index Estimation Using Remote Sensing: Research Trends and Future Directions. Remote Sens. 2020, 12, 2934. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Wu, W.; Tang, X.; Lv, J.; Yang, C.; Liu, H. Potential of Bayesian additive regression trees for predicting daily global and diffuse solar radiation in arid and humid areas. Renew. Energy 2021, 177, 148–163. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, Z.; Wang, Y. Forage yield, canopy characteristics, and radiation interception of ten alfalfa varieties in an arid environment. Plants 2022, 11, 1112. [Google Scholar] [CrossRef]
- Andersen, R. Nonparametric methods for modeling nonlinearity in regression analysis. Annu. Rev. Sociol. 2009, 35, 67–85. [Google Scholar] [CrossRef]
- Mancino, G.; Falciano, A.; Console, R.; Trivigno, M.L. Comparison between parametric and non-parametric supervised land cover classifications of sentinel-2 msi and landsat-8 oli data. Geographies 2023, 3, 82–109. [Google Scholar] [CrossRef]
- Chipman, H.A.; George, E.I.; McCulloch, R.E. BART: Bayesian additive regression trees. Ann. Appl. Stat. 2010, 4, 266–298. [Google Scholar] [CrossRef]
- Makowski, D.; Jeuffroy, M.-H.; Guérif, M. Bayesian methods for updating crop-model predictions, applications for predicting biomass and grain protein content. Frontis 2004, 3, 57–68. [Google Scholar]
- Correndo, A.A.; Tremblay, N.; Coulter, J.A.; Ruiz-Diaz, D.; Franzen, D.; Nafziger, E.; Prasad, V.; Rosso, L.H.M.; Steinke, K.; Du, J.; et al. Unraveling uncertainty drivers of the maize yield response to nitrogen: A Bayesian and machine learning approach. Agric. For. Meteorol. 2021, 311, 108668. [Google Scholar] [CrossRef]
- Hamilton, V.L.; Kansas Agricultural Experiment Station; United States. Soil Survey, Wichita County, Kansas. U.S. Dept. of Agriculture, Soil Conservation Service. 1965. Available online: https://catalog.hathitrust.org/Record/101740228 (accessed on 10 February 2024.).
- Kansas Mesonet. Available online: https://mesonet.k-state.edu/ (accessed on 20 December 2022).
- Córdoba, M.; Vega, A.; Balzarini, M. Protocolo de Análisis para la Delimitación de Zonas de Manejo Intralote; Conference: XIX Reunión Científica del GABAt: Santiago del Estero, Argentina, 2014. [Google Scholar] [CrossRef]
- Planet Fusion Monitoring Technical Specifications. 2021. Available online: https://assets.planet.com/docs/Planet_fusion_specification_March_2021.pdf (accessed on 15 December 2022).
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- Burger, R.; Aouizerats, B.; Den Besten, N.; Guillevic, P.; Catarino, F.; Van Der Horst, T.; Jackson, D.; Koopmans, R.; Ridderikhoff, M.; Robson, G.; et al. The Biomass Proxy: Unlocking Global Agricultural Monitoring through Fusion of Sentinel-1 and Sentinel-2. Remote Sens. 2024, 16, 835. [Google Scholar] [CrossRef]
- Gatti, A.; Bertolini, A. Sentinel-2 Products Specification Document; Thales Alenia Space: Cannes, France, 2018; pp. 1–487. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 12 September 2022).
- Aybar, C.; Wu, Q.; Bautista, L.; Yali, R.; Barja, A. rgee: An R package for interacting with Google Earth Engine. J. Open Source Softw. 2020, 5, 2272. [Google Scholar] [CrossRef]
- Kapelner, A.; Bleich, J. bartMachine: Machine Learning with Bayesian Additive Regression Trees. J. Stat. Softw. 2016, 70, 1–40. [Google Scholar] [CrossRef]
- Debeer, D.; Strobl, C. Conditional permutation importance revisited. BMC Bioinform. 2020, 21, 307. [Google Scholar] [CrossRef]
- Zhong, Y.; He, J.; Chalise, P. Nested and Repeated Cross Validation for Classification Model with High-Dimensional Data. Rev. Colomb. Estad. 2020, 43, 103–125. [Google Scholar] [CrossRef]
- Dinh, T.L.A.; Aires, F. Nested leave-two-out cross-validation for the optimal crop yield model selection. Geosci. Model Dev. 2022, 15, 3519–3535. [Google Scholar] [CrossRef]
- Roberts, J.; Curran, M.; Poynter, S.; Moy, A.; Ommen, T.V.; Vance, T.; Tozer, C.; Graham, F.S.; Young, D.A.; Plummer, C.; et al. Correlation confidence limits for unevenly sampled data. Comput. Geosci. 2017, 104, 120–124. [Google Scholar] [CrossRef]
- Trachsel, M.; Telford, R.J. Technical note: Estimating unbiased transfer-function performances in spatially structured environments. Clim. Past 2016, 12, 1215–1223. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Mazzara, M.; Bruel, J.-M.; Meyer, B.; Petrenko, A. Software Technology: Methods and Tools. In Proceedings of the 51st International Conference, TOOLS 2019, Innopolis, Russia, 15–17 October 2019; Volume 11771. [Google Scholar] [CrossRef]
- Williams, B.K.A.; Eaton, M.J.; Breininger, D.R. Adaptive resource management and the value of information. Ecol. Model. 2011, 222, 3429–3436. [Google Scholar] [CrossRef]
- Shirley, R.; Pope, E.; Bartlett, M.; Oliver, S.; Quadrianto, N.; Hurley, P.; Duivenvoorden, S.; Rooney, P.; Barrett, A.B.; Kent, C.; et al. An empirical, Bayesian approach to modelling crop yield: Maize in USA. Environ. Res. Commun. 2020, 2, 025002. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 2010, 114, 2637–2650. [Google Scholar] [CrossRef]
- Löw, F.; Duveiller, G. Defining the spatial resolution requirements for crop identification using optical remote sensing. Remote Sens. 2014, 6, 9034–9063. [Google Scholar] [CrossRef]
- Tedesco, D.; Nieto, L.; Hernández, C.; Rybecky, J.F.; Min, D.; Sharda, A.; Ciampitti, I.A. Remote sensing on alfalfa as an approach to optimize production outcomes: A review of evidence and directions for future assessments. Remote Sens. 2022, 14, 4940. [Google Scholar] [CrossRef]
- She, B.; Yang, Y.; Zhao, Z.; Huang, L.; Liang, D.; Zhang, D. Identification and mapping of soybean and maize crops based on Sentinel-2 data. Int. J. Agric. Biol. Eng. 2020, 13, 171–182. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.-W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef]
- Zhong, Y.; Chalise, P.; He, J. Nested cross-validation with ensemble feature selection and classification model for high-dimensional biological data. Commun. Stat.—Simul. Comput. 2023, 52, 110–125. [Google Scholar] [CrossRef]
- Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Homayouni, S.; Shahrabi, H.S.; Matkan, A.; Radiom, S. Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features. Remote Sens. Appl. Soc. Environ. 2022, 25, 100657. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Zhang, M.; Wang, X.; Yan, Y.; Sun, X.; Xu, D. A Method for Estimating Alfalfa (Medicago sativa L.) Forage Yield Based on Remote Sensing Data. Agronomy 2022, 13, 2597. [Google Scholar] [CrossRef]
- Sapkota, A.; Haghverdi, A.; Montazar, A. Estimating fall-harvested alfalfa (Medicago sativa L.) yield using unmanned aerial vehicle–based multispectral and thermal images in southern California. Agrosystems Geosci. Environ. 2023, 6, e20392. [Google Scholar] [CrossRef]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- McCord, S.E.; Buenemann, M.; Karl, J.W.; Browning, D.M.; Hadley, B.C. Integrating Remotely Sensed Imagery and Existing Multiscale Field Data to Derive Rangeland Indicators: Application of Bayesian Additive Regression Trees. Rangel. Ecol. Manag. 2017, 70, 644–655. [Google Scholar] [CrossRef]
- Habyarimana, E.; Piccard, I.; Zinke-Wehlmann, C.; De Franceschi, P.; Catellani, M.; Dall’Agata, M. Early within-season yield prediction and disease detection using sentinel satellite imageries and machine learning technologies in biomass sorghum. In Software Technology: Methods and Tools: 51st International Conference, TOOLS, Innopolis, Russia, Proceedings 51; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 227–234. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
- Hill, J.; Linero, A.; Murray, J. Bayesian Additive Regression Trees: A Review and Look Forward. Annu. Rev. Stat. Its Appl. 2020, 7, 251–278. [Google Scholar] [CrossRef]
- Vance, J.A.; Rasheed, K.; Missaoui, A.; Maier, F.W. Data Synthesis for Alfalfa Biomass Yield Estimation. AI 2022, 4, 1–15. [Google Scholar] [CrossRef]
Weather Variable | Value |
---|---|
Mean temperature (°C) | 24 |
Minimum temperature (°C) | 3.7 |
Maximum temperature (°C) | 41 |
Cumulative precipitation (mm) | 384 |
Field | Surface (ha) | Sampling Dates | ||||
---|---|---|---|---|---|---|
1 | 25 | 3 May | 13 June | 8 July | 27 July | 8 August |
2 | 58 | 13 May | 14 June | |||
3 | 63 | 16 May | 14 June | 27 July |
Sources | Bands | Spectral Resolution (μm) |
---|---|---|
Planet Fusion | Blue | 0.45–0.51 |
Green | 0.53–0.59 | |
Red | 0.64–0.67 | |
NIR | 0.85–0.88 | |
PlanetScope | Coastalblue | 0.431–0.452 |
Blue | 0.465–0.515 | |
GreenI | 0.513–0.549 | |
Green | 0.547–0.583 | |
Yellow | 0.600–0.620 | |
Red | 0.650–0.680 | |
Rededge | 0.697–0.713 | |
NIR | 0.845–0.885 | |
Sentinel-2 | B2 | 0.459–0.525 |
B3 | 0.542–0.578 | |
B4 | 0.649–0.680 | |
B5 | 0.697–0.712 | |
B6 | 0.733–0.748 | |
B7 | 0.773–0.793 | |
B8 | 0.780–0.886 | |
B8A | 0.854–0.875 | |
B9 | 0.935–0.955 | |
B11 | 1.568–1.659 | |
B12 | 2.115–2.290 |
Hyperparameter | Values Implemented | Optimized Value |
---|---|---|
k | 1–3–5–7–9 | 1 |
q | 0.1–0.3–0.5–0.7–0.9 | 0.1 |
Nu | 1–3–5–7–9 | 1 |
Num tress | 1 to 100 (By steps of 3) | 61 |
Field | Date | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
1 | 3 May 2022 | 1.62 | 0.6 | 0.76 | 2.65 |
13 June 2022 | 1.46 | 0.19 | 1.06 | 1.75 | |
8 July 2022 | 0.97 | 0.26 | 0.26 | 1.2 | |
27 July 2022 | 1 | 0.2 | 0.73 | 1.28 | |
30 August 2022 | 0.7 | 0.26 | 0.25 | 1.24 | |
2 | 13 May 2022 | 0.9 | 0.24 | 0.59 | 1.42 |
14 June 2022 | 0.92 | 0.36 | 0.41 | 1.41 | |
3 | 16 May 2022 | 0.99 | 0.45 | 0.46 | 1.74 |
14 June 2022 | 0.85 | 0.28 | 0.37 | 1.39 | |
27 July 2022 | 0.25 | 0.19 | 0.03 | 0.59 | |
Overall | 0.98 | 0.3 | 0.03 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucero, M.F.; Hernández, C.M.; Carcedo, A.J.P.; Zajdband, A.; Guillevic, P.C.; Houborg, R.; Hamilton, K.; Ciampitti, I.A. Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data. Remote Sens. 2024, 16, 3379. https://doi.org/10.3390/rs16183379
Lucero MF, Hernández CM, Carcedo AJP, Zajdband A, Guillevic PC, Houborg R, Hamilton K, Ciampitti IA. Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data. Remote Sensing. 2024; 16(18):3379. https://doi.org/10.3390/rs16183379
Chicago/Turabian StyleLucero, Matias F., Carlos M. Hernández, Ana J. P. Carcedo, Ariel Zajdband, Pierre C. Guillevic, Rasmus Houborg, Kevin Hamilton, and Ignacio A. Ciampitti. 2024. "Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data" Remote Sensing 16, no. 18: 3379. https://doi.org/10.3390/rs16183379
APA StyleLucero, M. F., Hernández, C. M., Carcedo, A. J. P., Zajdband, A., Guillevic, P. C., Houborg, R., Hamilton, K., & Ciampitti, I. A. (2024). Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data. Remote Sensing, 16(18), 3379. https://doi.org/10.3390/rs16183379