Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology
Abstract
:1. Introduction
2. Methods
3. Data
4. Principles for SST Estimates
4.1. SST Retrieval Process
4.2. SSES Determination
4.3. Compositing of Products
- L3C-01hour
- The MERGE algorithm uses hourly products estimated at time . For every point on the full disk, using up to 7 consecutive current and prior L2P observations, (from time ), by choosing the time point that best approximates the expected SST at time , assuming that the SST is linearly trending in the best quality over time.
- L3C-04hour
- The MERGE algorithm also permits four-hourly products that are estimated at time . For every point on the full disk, using five consecutive current and prior L3C-01hour full disk observations, (from time ), by choosing the time point that best approximates the expected SST, assuming linear trending in the best quality SST over time.
- L3C-01day
- Nightly SST products are estimated using the CHOOSE algorithm, which selects the latest best quality hourly L3C-01hour SST during the night, before sunrise, for each point on the full disk.
4.3.1. MERGE Algorithm
- PREPARE
- Determine candidate SST at the target time , , by interpolating .
- Given a selection of SST retrievals ordered over time T, at location X, , of quality :
- (a)
- Choose an appropriate Land/Ice mask to identify observation locations that are within scope.
- (b)
- Quality control SST, such that:
- SST is in range, (271 K 330 K).
- SST change over consecutive time periods, , is not too large (−10 K 100 K). Note warm-to-cold transitions are significantly greater causes for removal than cold-to-warm transitions.
- (c)
- Identify the background SST, , subject to a constraint on Q:
- (d)
- Interpolate SSTBG in T, using the quality_level as an exponential weight:
- (e)
- Identify the foreground SST, , based on the interpolated background:
- (f)
- Interpolate SSTFG in T, using the quality_level as an exponential weight:
- Determine the prepared SST at the target time, , , as approximated by the nearest observed SST, :
- Determine the quality field similarly, .
- If a determination is not possible due to too little data or out of range, is considered to have no value.
- SEED
- Determine the seed domain , which forms the basis of reliable SSTs by identifying connected regions of approximately constant , and significant size. The domain of merged SST is grown from these regions of stability.
- Segregate the prepared SST, , into connected regions of nearest neighbours, such that if two adjacent values differ by 0.2 K or less, they belong to the same connected region, regardless of assigned quality.
- Remove connected regions with an area of less than 20 pixels considering them not large enough to have a confirmed stable value.
- GROW
- Grow the seed domain , to the final merged SST,
- Expand the boundary of by replacing undefined or removed SST values by the inverse distance weighted in a 5 pixel radius (using modified Shepard’s method of radius 5 with on a Euclidean metric in native pixel coordinates).
- Repeat this process 15 times, forming .
- Consider the observation with the value closest to the determined domain as before,
4.3.2. CHOOSE Algorithm
- Start with an undefined set of merged values, with undefined quality.
- If the component SST exists as a night SST, and is of sufficient quality (greater than or equal to the current quality), record this as the best choice SST, along with quality and time.
- Repeat for all identified components within the temporal range.
4.4. Validation
5. Results
5.1. L2P SST Product
5.2. Coverage and Bias for L2P SST
5.2.1. Temporal and Spatial Bias
5.2.2. Annual and Diurnal Bias
5.2.3. Validation of Full Disk L2P SSTs
5.3. L3C SST Product
6. Application of Himawari-8 SSTs
7. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea Surface Temperature from the New Japanese Geostationary Meteorological Himawari-8 Satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef]
- Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system. Ocean. Sens. Monit. VIII 2016, 9827, 149–159. [Google Scholar] [CrossRef]
- Heidinger, A.K. ABI cloud height. In Algorithm Theoretical Basis Document; NOAA NESDIS Center for Satellite Applications and Research: Silver Spring, MD, USA, 2013; 77p. Available online: https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Height.pdf (accessed on 3 September 2024).
- Huang, Y.; Siems, S.; Manton, M.; Protat, A.; Majewski, L.; Nguyen, H. Evaluating Himawari-8 Cloud Products Using Shipborne and CALIPSO Observations: Cloud-Top Height and Cloud-Top Temperature. J. Atmos. Ocean. Technol. 2019, 36, 2327–2347. [Google Scholar] [CrossRef]
- GHRSST Science Team. The Recommended GHRSST Data Specification (GDS) 2.0, Document Revision 4; GHRSST Science Team: Montréal, QC, USA, 2010; p. 123. [Google Scholar] [CrossRef]
- Griffin, C.; Beggs, H.; Majewski, L. GHRSST Compliant AVHRR SST Products over the Australian Region Version 1; Technical Report; Bureau of Meteorology: Melbourne, Australia, 2017; p. 151. [Google Scholar]
- Govekar, P.D.; Griffin, C.; Beggs, H. Multi-sensor Sea Surface Temperature products from the Australian Bureau of Meteorology. Remote. Sens. 2022, 14, 3785. [Google Scholar] [CrossRef]
- Saunders, R.W.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Int. J. Remote. Sens. 2018, 11, 123–150. [Google Scholar] [CrossRef]
- Minnett, P.; Kaiser-Weiss, A.K. Near-Surface Oceanic Temperature Gradients; Discussion Document; Group for High Resolution Sea-Surface Temperature: Leicester, UK, 2012; p. 7. Available online: https://www.ghrsst.org/wp-content/uploads/2021/04/SSTDefinitionsDiscussion.pdf (accessed on 3 September 2024).
- Merchant, C.J.; Harris, A.R.; Maturi, E.; MacCallum, S. Probabilistic physically-based cloud screening of satellite infra-red imagery for operational sea surface temperature retrieval. Q. J. R. Meteorol. Soc. 2005, 131, 2735–2755. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Mittaz, J.P.D.; Embury, O.; Eastwood, S.; Merchant, C.J. Bayesian cloud detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data. Remote Sens. 2018, 10, 97. [Google Scholar] [CrossRef]
- Merchant, C.J.; Borgne, P.L.; Roquet, H.; Legendre, G. Extended optimal estimation techniques for sea surface temperature from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI). Remote Sens. Environ. 2013, 131, 287–297. [Google Scholar] [CrossRef]
- Andersson, E.; Haseler, J.; Undén, P.; Courtier, P.; Kelly, G.; Vasiljevic, D.; Brankovic, C.; Gaffard, C.; Hollingsworth, A.; Jakob, C.; et al. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). III: Experimental results. Q. J. Roy. Meteor. Soc 1998, 124, 1831–1860. [Google Scholar] [CrossRef]
- Eyre, J.R.; Kelly, G.A.; McNally, A.P.; Andersson, E.; Persson, A. Assimilation of TOVS radiance information through one-dimensional variational analysis. Q. J. R. Meteorol. Soc. 1993, 119, 1427–1463. [Google Scholar] [CrossRef]
- Li, J.; Wolf, W.; Menzel, W.P.; Zhang, W.; Huang, H.; Achtor, T.H. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Embury, O.; Merchant, C.J.; Corlett, G.K. A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: Initial validation, accounting for skin and diurnal variability effects. Remote Sens. Environ. 2012, 116, 62–78. [Google Scholar] [CrossRef]
- Saunders, R.W. An automated scheme for the removal of cloud contamination from AVHRR radiances over Western Europe. Int. J. Remote Sens. 1986, 7, 867–886. [Google Scholar] [CrossRef]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear-sky and cloudy radiances from AHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP. J. Clim. 1993, 12, 2341–2369. [Google Scholar] [CrossRef]
- Frey, R.; Ackerman, S.; Liu, Y.; Strabala, K.; Zhang, H.; Key, J.; Wang, X. Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5. J. Ofatmospheric Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; ISBN 139789810227401. [Google Scholar] [CrossRef]
- Merchant, C.J.; Borgne, P.L.; Roquet, H.; Marsouin, A. Sea surface temperature from a geostationary satellite by optimal estimation. Remote Sens. Environ. 2009, 113, 445–457. [Google Scholar] [CrossRef]
- Merchant, C.J.; Le Borgne, P.; Marsouin, A.; Roquet, H. Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ. 2008, 112, 2469–2484. [Google Scholar] [CrossRef]
- Bureau of Meteorology (2022): Bureau of Meteorology Satellite Archive (Collection) NCI Australia. Available online: https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f9367_4020_5456_5573 (accessed on 6 September 2024).
- Zhong, A.; Beggs, H. Operational Implementation of Global Australian Multi-Sensor Sea Surface Temperature Analysis. Anal. Predict. Oper. Bull. Bur. Meteorol. Melb. Aust. 2008, 77, 43. [Google Scholar]
- Beggs, H.; Qi, L.; Govekar, P.; Griffin, C. Ingesting VIIRS SST into the Bureau of Meteorology’s Operational SST Analyses. In Proceedings of the GHRSST XXI Science Team Meeting, Virtual, 1–4 June 2020; Virtual Meeting Hosted by EUMETSAT. pp. 104–110. [Google Scholar] [CrossRef]
- Puri, K.; Dietachmayer, G.; Steinle, P.; Dix, M.; Rikus, L.; Logan, L.; Naughton, M.; Tingwell, C.; Xiao, Y.; Barras, V.; et al. Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteorol. Oceanogr. J. 2013, 63, 265–284. [Google Scholar] [CrossRef]
- National Operational Centre Operations Bulletin Number 125 (2019), APS3 Upgrade of the ACCESS-G/GE Numerical Weather Prediction System. Available online: http://reg.bom.gov.au/australia/charts/bulletins/opsbull_G3GE3_external_v3.pdf (accessed on 27 May 2024).
- National Meteorological and Oceanographic Centre Operations Bulletin Number 93 (2012), APS1 Upgrade of the ACCESS-G Numerical Weather Prediction System. Available online: http://www.bom.gov.au/australia/charts/bulletins/apob93.pdf (accessed on 27 May 2024).
- Bureau National Operations Centre Operations Bulletin Number 105 (2016), APS2 Upgrade to the ACCESS-G Numerical Weather Prediction System. Available online: http://www.bom.gov.au/australia/charts/bulletins/APOB105.pdf (accessed on 27 May 2024).
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Roquet, H.; Borgne, P.L. Retrieval characteristics of non-linear sea surface temperature from the Advanced Very High Resolution Radiometer. Geophys. Res. Lett. 2009, 36, L17604. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Minnett, P.J.; Borgne, P.L.; Merchant, C.J. Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett. 2008, 35, L22602. [Google Scholar] [CrossRef]
- Cayula, J.F.; May, D.; McKenzie, B.; Olszewski, D.; Willis, K. Reliability estimates for real-time sea surface temperature. Sea Technol. 2004, 45, 67–74. [Google Scholar]
- Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.B.; Minnett, P.J.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Dash, P. Sensor-specific error statistics for SST in the Advanced Clear-Sky Processor for Ocean. J. Atmos. Ocean. Technol. 2016, 33, 345–359. [Google Scholar] [CrossRef]
- Donlon, C.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Rayner, N.; Brohan, P.; Parker, D.E.; Folland, C.K.; Kennedy, J.J.; Ansell, M.V.T.J.; Tett, S.F.B. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Clim. 2006, 19, 446–469. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. Evaluation of in situ sea surface temperatures for use in the calibration and validation of satellite retrievals. J. Geophys. Res. 2010, 115, C09022. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. in situ SST quality monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. Error characterization in iQuam SSTs using triple collocations with satellite measurements. Geophys. Res. Lett. 2016, 43, 10826–10834. [Google Scholar] [CrossRef]
- Garde, L.; Spillman, M.C.; Heron, S.; Beeden, R. ReefTemp Next Generation: A New Operational System for Monitoring Reef Thermal Stress. J. Oper. Oceanogr. 2014, 7, 21–33. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Griffin, C.; Govekar, P. Validation of Himawari-8 Sea Surface Temperature retrievals using Infrared SST Autonomous Radiometer Measurements. Remote Sens. 2023, 15, 2841. [Google Scholar] [CrossRef]
- Yang, M.; Guan, L.; Beggs, H.; Morgan, N.; Kurihara, Y.; Kachi, M. Comparison of Himawari-8 AHI SST with Shipboard Skin SST Measurements in the Australian Region. Remote Sens. 2020, 12, 1237. [Google Scholar] [CrossRef]
- Ditri, A.L.; Minnett, P.J.; Liu, Y.; Kilpatrick, K.; Kumar, A. The Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean. Remote Sens. 2018, 10, 212. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Shabanov, N.; Kihal, Y. Development and evaluation of SST algorithms for GOES-R ABI using MSG SEVIRI as a proxy. Remote Sens. Environ. 2011, 115, 3647–3658. [Google Scholar] [CrossRef]
- National Computational Infrastructure (NCI) Australia (2019). Gadi Supercomputer, NCI Australia (Service). Available online: https://nci.org.au (accessed on 6 September 2024).
- Embury, O.; Merchant, C.J.; Good, S.A.; Rayner, N.A.; Høyer, J.L.; Atkinson, C.; Block, T.; Alerskans, E.; Pearson, K.J.; Worsfold, M.; et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications. Sci. Data 2024, 11, 326. [Google Scholar] [CrossRef]
- IMOS fv02 1-Hour Himawari-8 L3C Data. Available online: https://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3C-1h/h08/catalog.html (accessed on 26 March 2024).
- IMOS fv02 4-Hour Himawari-8 L3C Data. Available online: https://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3C-4h/h08/catalog.html (accessed on 26 March 2024).
- IMOS fv02 1-Day Night Himawari-8 L3C Data. Available online: https://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3C-1d/ngt/h08/catalog.html (accessed on 26 March 2024).
- IMOS fv02 Night GeoPolar MultiSensor L3S Data. Available online: https://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3SGM-1d/ngt/catalog.html (accessed on 26 March 2024).
- Bureau Of Meteorology (2021): Bureau of Meteorology Satellite Observations (Collection). NCI Australia. Available online: https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f3533_2249_9116_3778 (accessed on 5 July 2024).
Dimension | Lower Limit | Upper Limit | Bin Size | Number of Bins | |
---|---|---|---|---|---|
Daytime | Path Length | 1.0 | 2.4 | 0.35 | 4 |
Spectral PDF 1 | SZA | 0.0 | 95 | 2.5 | 3.8 |
0.64 μm | 0.0 | 1.0 | 0.01 | 100 | |
0.86 μm | 0.0 | 1.0 | 0.01 | 100 | |
Daytime | Path Length | 1.0 | 2.4 | 0.35 | 4 |
Spectral PDF 2 | NWP SST | 271 | 304 | 1.0 | 33 |
10.4–12.4 μm BT difference | −1 | 9 | 0.2 | 50 | |
10.4 μm BT-SST | −20 | 10 | 1.0 | 30 | |
Night-time | Path Length | 1.0 | 2.4 | 0.35 | 4 |
Spectral PDF | NWP SST | 270 | 305 | 2.5 | 14 |
3.9–10.4 μm BT difference | −6 | 10 | 0.2 | 80 | |
10.4–12.4 μm BT difference | −1 | 9 | 0.2 | 50 | |
10.4 μm BT-NWP SST | −20 | 10 | 1.0 | 30 | |
Textural PDF | Day/Night | 0 | 180 | 90 | 2 |
Path Length | 1.0 | 2.4 | 0.35 | 4 | |
10.4 μm LSD | 0 | 2 | 0.005 | 400 |
Level | Meaning | P(c) | Sens | Other | |
---|---|---|---|---|---|
0 | No data | Invalid data, land | |||
1 | Bad data | <0.5 | <0.5 | >3 | SST < −2 °C; SST > 50 °C; Bad NWP |
2 | Worst quality | <0.8 | <0.9 | >2 | Limb pixel (satellite zenith ) |
3 | Low quality | <0.9 | <0.95 | >1 | Twilight () |
4 | Acceptable quality | Not used for Himawari-8 | |||
5 | Best quality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govekar, P.; Griffin, C.; Embury, O.; Mittaz, J.; Beggs, H.M.; Merchant, C.J. Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology. Remote Sens. 2024, 16, 3381. https://doi.org/10.3390/rs16183381
Govekar P, Griffin C, Embury O, Mittaz J, Beggs HM, Merchant CJ. Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology. Remote Sensing. 2024; 16(18):3381. https://doi.org/10.3390/rs16183381
Chicago/Turabian StyleGovekar, Pallavi, Christopher Griffin, Owen Embury, Jonathan Mittaz, Helen Mary Beggs, and Christopher J. Merchant. 2024. "Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology" Remote Sensing 16, no. 18: 3381. https://doi.org/10.3390/rs16183381
APA StyleGovekar, P., Griffin, C., Embury, O., Mittaz, J., Beggs, H. M., & Merchant, C. J. (2024). Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology. Remote Sensing, 16(18), 3381. https://doi.org/10.3390/rs16183381