Reconstruction of Coal Mining Subsidence Field by Fusion of SAR and UAV LiDAR Deformation Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Satellite SAR Data Including DInSAR and POT Data at the Ming Area Scale
2.3. UAV LiDAR Data at Working Face Scale
2.4. No. 8 Working Face GNSS in Situ Measured Data
2.5. Dataset Summaries
3. Methodology
3.1. DInSAR Method
3.2. POT Method
3.3. UAV LiDAR Method
3.4. PW Fusion Method
3.5. CMSF Accuracy Evaluation Method
4. Results and Analysis
4.1. The Preliminary CMSF Reconstructed by the SAR Method Including DInSAR and POT
4.2. The CMSF Reconstructed by the UAV LiDAR
4.3. The Refined CMSF Reconstructed by the PW Method
5. Discussion
5.1. Accuracy of the Preliminary CMSF by SAR
5.2. Accuracy of the CMSF by UAV LiDAR
5.3. Accuracy of the Refined CMSF
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, J.; Yang, Y.; Elia Campana, P.; He, J. City-Level Analysis of Subsidy-Free Solar Photovoltaic Electricity Price, Profits and Grid Parity in China. Nat. Energy 2019, 4, 709–717. [Google Scholar] [CrossRef]
- Song, D.; Hu, Z.; Zeng, J.; Sun, H. Influence of Mining on Vegetation in Semi-Arid Areas of Western China Based on the Coupling of above Ground and below Ground—A Case Study of Daliuta Coalfield. Ecol. Indic. 2024, 161, 111964. [Google Scholar] [CrossRef]
- Unlu, T.; Akcin, H.; Yilmaz, O. An Integrated Approach for the Prediction of Subsidence for Coal Mining Basins. Eng. Geol. 2013, 166, 186–203. [Google Scholar] [CrossRef]
- Salmi, E.F.; Nazem, M.; Karakus, M. Numerical Analysis of a Large Landslide Induced by Coal Mining Subsidence. Eng. Geol. 2017, 217, 141–152. [Google Scholar] [CrossRef]
- Miao, D.; Lv, Y.; Yu, K.; Liu, L.; Jiang, J. Research on Coal Mine Hidden Danger Analysis and Risk Early Warning Technology Based on Data Mining in China. Process Saf. Environ. Prot. 2023, 171, 1–17. [Google Scholar] [CrossRef]
- Cai, Y.; Jin, Y.; Wang, Z.; Chen, T.; Wang, Y.; Kong, W.; Xiao, W.; Li, X.; Lian, X.; Hu, H. A Review of Monitoring, Calculation, and Simulation Methods for Ground Subsidence Induced by Coal Mining. Int. J. Coal Sci. Technol. 2023, 10, 32. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland. Remote Sens. 2020, 12, 242. [Google Scholar] [CrossRef]
- Wempen, J.M. Application of DInSAR for Short Period Monitoring of Initial Subsidence Due to Longwall Mining in the Mountain West United States. Int. J. Min. Sci. Technol. 2020, 30, 33–37. [Google Scholar] [CrossRef]
- Smail, T.; Abed, M.; Mebarki, A.; Lazecky, M. Earthquake-Induced Landslide Monitoring and Survey by Means of InSAR. Nat. Hazards Earth Syst. Sci. 2022, 22, 1609–1625. [Google Scholar] [CrossRef]
- Viher, M.; Vukovic, J.; Racetin, I. A Study of Tropospheric and Ionospheric Propagation Conditions during Differential Interferometric SAR Measurements Applied on Zagreb 22 March 2020 Earthquake. Remote Sens. 2023, 15, 701. [Google Scholar] [CrossRef]
- Valerio, E.; Luca, C.; Lanari, R.; Manzo, M.; Battaglia, M. The August 2019 Piton de La Fournaise (La Réunion Island) Eruption: Analysis of the Multi-Source Deformation Pattern Detected through Sentinel-1 DInSAR Measurements. Remote Sens. 2022, 14, 1762. [Google Scholar] [CrossRef]
- Luca, C.; Valerio, E.; Giudicepietro, F.; Macedonio, G.; Casu, F.; Lanari, R. Pre- and Co-Eruptive Analysis of the September 2021 Eruption at Cumbre Vieja Volcano (La Palma, Canary Islands) Through DInSAR Measurements and Analytical Modeling. Geophys. Res. Lett. 2022, 49, e2021GL097293. [Google Scholar] [CrossRef]
- Yang, B.; Du, W.; Li, J.; Bao, A.; Ge, W.; Wang, S.; Lyu, X.; Gao, X.; Cheng, X. The Influence of Glacier Mass Balance on River Runoff in the Typical Alpine Basin. Water 2023, 15, 2762. [Google Scholar] [CrossRef]
- Buchelt, S.; Blöthe, J.H.; Kuenzer, C.; Schmitt, A.; Ullmann, T.; Philipp, M.; Kneisel, C. Deciphering Small-Scale Seasonal Surface Dynamics of Rock Glaciers in the Central European Alps Using DInSAR Time Series. Remote Sens. 2023, 15, 2982. [Google Scholar] [CrossRef]
- Simmons, B.; Wempen, J. Quantifying Relationships between Subsidence and Longwall Face Advance Using DInSAR. Int. J. Min. Sci. Technol. 2020, 31, 91–94. [Google Scholar] [CrossRef]
- Infante, D.; Di Martire, D.; Confuorto, P.; Tessitore, S.; Tòmas, R.; Calcaterra, D.; Ramondini, M. Assessment of Building Behavior in Slow-Moving Landslide-Affected Areas through DInSAR Data and Structural Analysis. Eng. Struct. 2019, 199, 109638. [Google Scholar] [CrossRef]
- Manconi, A. How Phase Aliasing Limits Systematic Space-Borne DInSAR Monitoring and Failure Forecast of Alpine Landslides. Eng. Geol. 2021, 287, 106094. [Google Scholar] [CrossRef]
- Reyes-Carmona, C.; Barra, A.; Galve, J.P.; Monserrat, O.; Pérez-Peña, J.V.; Mateos, R.M.; Notti, D.; Ruano, P.; Millares, A.; López-Vinielles, J.; et al. Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sens. 2020, 12, 809. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time Evolution of Mining-Related Residual Subsidence Monitored over a 24-Year Period Using InSAR in Southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.P.; Zeni, G.; Lanari, R. Surface Deformation of Long Valley Caldera and Mono Basin, California, Investigated with the SBAS-InSAR Approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, K.; Deng, J.; Ge, D.; Liang, R.; Li, W.; Xu, Q. Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Ma, C.; Cheng, X.; Yang, Y.; Zhang, X.; Guo, Z.; Zou, Y. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sens. 2016, 8, 951. [Google Scholar] [CrossRef]
- Li, F.; Liu, G.; Gong, H.; Chen, B.; Zhou, C. Assessing Land Subsidence-Inducing Factors in the Shandong Province, China, by Using PS-InSAR Measurements. Remote Sens. 2022, 14, 2875. [Google Scholar] [CrossRef]
- Perski, Z.; Hanssen, R.; Wojcik, A.; Wojciechowski, T. InSAR Analyses of Terrain Deformation near the Wieliczka Salt Mine, Poland. Eng. Geol. 2009, 106, 58–67. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L.; Dong, J.; Wang, C.; Liao, M. Polarimetric SAR Pixel Offset Tracking for Large-Gradient Landslide Displacement Mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102867. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, X.; Huang, X.; Huang, Y.; Peng, Y.; Zhang, Y.; Zhen, J. Monitoring Glacier Terminus and Surface Velocity Changes over Different Time Scales Using Massive Imagery Analysis and Offset Tracking at the Hoh Xil World Heritage Site, Qinghai-Tibet Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102913. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Li, Z.; Zhang, M.; Wang, Y.; Liu, J.; Yang, J.; Yang, Z. Retrieving and Verifying Three-Dimensional Surface Motion Displacement of Mountain Glacier from Sentinel-1 Imagery Using Optimized Method. Water 2021, 13, 1793. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q. Time-Series Deformation Monitoring over Mining Regions with SAR Intensity-Based Offset Measurements. Remote Sens. Lett. 2013, 4, 436–445. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Zhou, W.; Tong, L.; Guo, Z.; Liu, G.; Yuan, W.; Sousa, J.J.; Perski, Z. 3D Surface Velocity Retrieval of Mountain Glacier Using an Offset Tracking Technique Applied to Ascending and Descending SAR Constellation Data: A Case Study of the Yiga Glacier. Int. J. Digit. Earth 2019, 12, 614–624. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.; Taboury, J. Measuring Ground Displacements from SAR Amplitude Images: Application to the Landers Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, C.; Zhang, Q.; Lu, Z.; Yang, C. Deformation of Linfen-Yuncheng Basin (China) and Its Mechanisms Revealed by Π-RATE InSAR Technique. Remote Sens. Environ. 2018, 218, 221–230. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, W.; Lian, X.; Xu, X. Monitoring Mining Surface Subsidence with Multi-Temporal Three-Dimensional Unmanned Aerial Vehicle Point Cloud. Remote Sens. 2023, 15, 374. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, W.; Lin, X.; Ma, B.; Bai, L. An Accurate Digital Subsidence Model for Deformation Detection of Coal Mining Areas Using a UAV-Based LiDAR. Remote Sens. 2022, 14, 421. [Google Scholar] [CrossRef]
- Choi, S.-K.; Ramirez, R.A.; Lim, H.-H.; Kwon, T.-H. Multi-Source Remote Sensing-Based Landslide Investigation: The Case of the August 7, 2020, Gokseong Landslide in South Korea. Sci. Rep. 2024, 14, 12048. [Google Scholar] [CrossRef] [PubMed]
- Zholdoshbekov, E.; Duishonakunov, M.; Du, Q.; Voda, M. Assessing Glacier Boundaries in the Ala-Archa Valley of Kyrgyzstan by Using Sentinel-1 SAR Dataset and High-Resolution UAV Imagery. Remote Sens. 2023, 15, 1131. [Google Scholar] [CrossRef]
- de la Barreda-Bautista, B.; Boyd, D.S.; Ledger, M.; Siewert, M.B.; Chandler, C.; Bradley, A.V.; Gee, D.; Large, D.J.; Olofsson, J.; Sowter, A.; et al. Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sens. 2022, 14, 444. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Xu, Q.; Hu, J.-C.; Wang, Y.-S.; Dong, X.-J.; Chen, Q.; Zhang, Y.-J.; Li, H.-L. Source Model and Triggered Aseismic Faulting of the 2021 Mw 7.3 Maduo Earthquake Revealed by the UAV-Lidar/Photogrammetry, InSAR, and Field Investigation. Remote Sens. 2022, 14, 5859. [Google Scholar] [CrossRef]
- Wang, S.; Bai, Z.; Lv, Y.; Zhou, W. Monitoring Extractive Activity-Induced Surface Subsidence in Highland and Alpine Opencast Coal Mining Areas with Multi-Source Data. Remote Sens. 2022, 14, 3442. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Zhang, Z.; Niu, Y.; Zhao, Z. Mine Subsidence Monitoring Integrating DS-InSAR with UAV Photogrammetry Products: Case Studies on Hebei and Inner Mongolia. Remote Sens. 2023, 15, 4998. [Google Scholar] [CrossRef]
- Meng, Q.; Li, W.; Raspini, F.; Xu, Q.; Peng, Y.; Ju, Y.; Zheng, Y.; Casagli, N. Time-Series Analysis of the Evolution of Large-Scale Loess Landslides Using InSAR and UAV Photogrammetry Techniques: A Case Study in Hongheyan, Gansu Province, Northwest China. Landslides 2021, 18, 251–265. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, Y.; Yang, H.; Han, Y.; Peng, J.; Lan, J.; Zhan, L.; Chen, Y.; Bate, B. Monitoring and Quantitative Human Risk Assessment of Municipal Solid Waste Landfill Using Integrated Satellite–UAV–Ground Survey Approach. Remote Sens. 2021, 13, 4496. [Google Scholar] [CrossRef]
- Deffontaines, B.; Chang, K.-J.; Champenois, J.; Fruneau, B.; Pathier, E.; Hu, J.-C.; Lu, S.-T.; Liu, Y.-C. Active Interseismic Shallow Deformation of the Pingting Terraces (Longitudinal Valley—Eastern Taiwan) from UAV High-Resolution Topographic Data Combined with InSAR Time Series. Geomat. Nat. Hazards Risk 2017, 8, 120–136. [Google Scholar] [CrossRef]
- Fan, H.; Gao, X.; Yang, J.; Deng, K.; Yu, Y. Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Offset-Tracking Methods. Remote Sens. 2015, 7, 9166–9183. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Du, Q.; Chen, Y.; Ding, J. Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring. Remote Sens. 2018, 10, 1055. [Google Scholar] [CrossRef]
- Hu, B.; Chen, L.; Zou, Y.; Wu, X.; Washaya, P. Methods for Monitoring Fast and Large Gradient Subsidence in Coal Mining Areas Using SAR Images: A Review. IEEE Access 2021, 9, 159018–159035. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Q.S.; Dai, H.Y.; Guo, J.T.; Yan, Y.G. Research on Integrated Monitoring Technology and Practice of “Space-Sky-Ground” on Surface Movement in Mining Area. Coal Sci. Technol. 2020, 48, 207–213. [Google Scholar]
- Wang, Y.; Sun, K.; Li, L.; Lei, Y.; Wu, S.; Wang, F.; Luo, J. The Optimal Allocation and the Evaluation of Water Resources Carrying Capacity in Shendong Mining Area. Resour. Policy 2022, 77, 102738. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, W.; Xu, J.; Wu, J.; Li, Y. High-Intensity Longwall Mining-Induced Ground Subsidence in Shendong Coalfield, China. Int. J. Rock Mech. Min. Sci. 2021, 141, 104730. [Google Scholar] [CrossRef]
- Hong, Y.; Du, H.; Deng, Z. A Framework of Economic-Social-Natural Sustainability Evaluation Based on Multidimensional Land-Use Ecological Niche Theory: Evidence in Shendong CEBs, China. Ecol. Indic. 2023, 155, 110967. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, Y.; Jiang, H.; Feng, F.; Dong, Q. Assessment of the Environmental Changes in Arid and Semiarid Mining Areas Using Long Time-Series Landsat Images. Environ. Sci. Pollut. Res. 2021, 28, 52147–52156. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of Spatio-Temporal Ecological Vulnerability in an Arid, Coal Mining Region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Zhu, W.; Shan, Z. Simulation Research on the Influence of Eroded Primary Key Strata on Dynamic Strata Pressure of Shallow Coal Seams in Gully Terrain. Int. J. Min. Sci. Technol. 2012, 22, 51–55. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Y.-T.; Wang, J.-H.; Chang, Y.-L. Rice-Field Mapping with Sentinel-1A SAR Time-Series Data. Remote Sens. 2021, 13, 103. [Google Scholar] [CrossRef]
- Aðalgeirsdóttir, G.; Magnússon, E.; Pálsson, F.; Thorsteinsson, T.; Belart, J.M.C.; Jóhannesson, T.; Hannesdóttir, H.; Sigurðsson, O.; Gunnarsson, A.; Einarsson, B.; et al. Glacier Changes in Iceland From ∼1890 to 2019. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, W.-B.; Wu, W.; Zhang, B.; Pan, Y. Recent Surface Deformation in the Tianjin Area Revealed by Sentinel-1A Data. Remote Sens. 2019, 11, 130. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs Vary from One to Another: An Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry Data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Marešová, J.; Gdulová, K.; Pracná, P.; Moravec, D.; Gábor, L.; Prošek, J.; Barták, V.; Moudrý, V. Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs. Remote Sens. 2021, 13, 3931. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Chen, C.; Liu, Y. Correction of Global Digital Elevation Models in Forested Areas Using an Artificial Neural Network-Based Method with the Consideration of Spatial Autocorrelation. Int. J. Digit. Earth 2023, 16, 1568–1588. [Google Scholar] [CrossRef]
- Buonanno, S.; Zeni, G.; Fusco, A.; Manunta, M.; Marsella, M.; Carrara, P.; Lanari, R. A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements. Remote Sens. 2019, 11, 2133. [Google Scholar] [CrossRef]
- Samsonov, S.; Dille, A.; Dewitte, O.; Kervyn, F.; d’Oreye, N. Satellite Interferometry for Mapping Surface Deformation Time Series in One, Two and Three Dimensions: A New Method Illustrated on a Slow-Moving Landslide. Eng. Geol. 2020, 266, 105471. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, Q.X.; Hou, A.Y.; Ding, L.J.; Liu, G.L.; Wang, K. Accuracy Verification and Evaluation of Sentinel-1A Repeat Track Differential Interferometric Synthetic Aperture Radar in Monitoring Mining Subsidence. J. Appl. Remote Sens. 2020, 14, 014501. [Google Scholar] [CrossRef]
- Sri Sumantyo, J.T.; Perissin, D.; Widodo, J.; Andreas, H.; Wikantika, K.; Rohmaneo Darminto, M.; Kurniawan, A.; Cahyadi, M.N.; Hariyanto, T. Estimation of Spouted Hot Mudflow Current Using Continuity Equation and DInSAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Wenhui, D.; Feng, Y.; Sun, X.; Fu, K. CSF-Net: Color Spectrum Fusion Network for Semantic Labeling of Airborne Laser Scanning Point Cloud. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 339–352. [Google Scholar] [CrossRef]
- Chen, C.; Wang, M.; Chang, B.; Li, Y. Multi-Level Interpolation-Based Filter for Airborne LiDAR Point Clouds in Forested Areas. IEEE Access 2020, 8, 41000–41012. [Google Scholar] [CrossRef]
- Giles, A.B.; Massom, R.A.; Warner, R.C. A Method for Sub-Pixel Scale Feature-Tracking Using Radarsat Images Applied to the Mertz Glacier Tongue, East Antarctica. Remote Sens. Environ. 2009, 113, 1691–1699. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Hu, Z.; Yu, Y.; Shao, F. Boundary Demarcation of the Damaged Cultivated Land Caused by Coal Mining Subsidence. Bull. Eng. Geol. Environ. 2014, 73, 621–633. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, C.; Guo, W.; Li, T. Dynamic Monitoring of Winter Wheat Health in Mining Subsidence Areas by Combined Active and Passive Remote Sensing Technology. Land 2023, 12, 2079. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
Type | Product | Note |
---|---|---|
UAV | FEIMA D200 | Maximum flight time: 48 min |
Cruising speed: 15 m/s | ||
Takeoff weight: 7.5 kg | ||
LiDAR | D-LiDAR2000 [32] | Ranging: 190 m@10%Reflectivity@100 klx 450 m@80%Reflectivity@0 klx |
Scanning frequency:240 kHz | ||
Ranging accuracy: ±2 cm | ||
Horizontal positioning accuracy: 2 cm |
Dataset Names | Data Time | Purpose |
---|---|---|
Sentinel-1A | 5 March and 22 April 2023 | DInSAR and POT processed |
Copernicus DEM | 2015 | SAR image co-registration and removal of terrain phase |
UAV LiDAR point cloud data | 18 March and 14 April 2023 | Generate working surface UAV LiDAR DEMs |
UAV RTK checkpoints | 18 March and 14 April 2023 | Check the UAV LiDAR DEM’s accuracy |
GNSS in situ measured data | 31 March to 30 April 2023 | Reference data for the PW method and accuracy evaluation of reconstructed CMSF |
First Phase Elevation Assessment | Second Phase Elevation Assessment | ||||||
---|---|---|---|---|---|---|---|
ID | RTK/m | UAV LiDAR DEM/m | Difference Value | ID | RTK/m | UAV LiDAR DEM/m | Difference Value |
1 | 1141.172 | 1141.170 | 0.002 | 1 | 1141.226 | 1141.250 | −0.024 |
2 | 1145.411 | 1145.380 | 0.031 | 2 | 1145.409 | 1145.390 | 0.019 |
3 | 1154.637 | 1154.640 | −0.003 | 3 | 1154.630 | 1154.570 | 0.06 |
4 | 1188.597 | 1188.630 | −0.033 | 4 | 1188.659 | 1188.610 | 0.049 |
5 | 1163.590 | 1163.540 | 0.05 | 5 | 1160.655 | 1160.700 | −0.045 |
6 | 1169.942 | 1169.960 | −0.018 | 6 | 1169.892 | 1169.880 | 0.012 |
7 | 1165.690 | 1165.630 | 0.06 | 7 | 1165.832 | 1165.780 | 0.052 |
8 | 1184.592 | 1184.550 | 0.042 | 8 | 1184.480 | 1184.510 | −0.03 |
9 | 1185.065 | 1185.070 | −0.005 | 9 | 1185.040 | 1185.050 | −0.01 |
10 | 1178.653 | 1178.630 | 0.023 | 10 | 1178.568 | 1178.570 | −0.002 |
..……… | ..……… | ||||||
RMSE:0.038 m AAE:0.033 m | RMSE:0.041 m AAE:0.035 m |
Observation Line | MAE (mm) | AAE (mm) | RMSE (mm) | |||
---|---|---|---|---|---|---|
Boundary | Center | Boundary | Center | Boundary | Center | |
Line H | 42 | 400 | 13 | 171 | 18 | 210 |
Line A | 47 | 160 | 19 | 75 | 27 | 82 |
Total result | 400 | 96 | 144 |
Observation Line | MAE (mm) | AAE (mm) | RMSE (mm) | |||
---|---|---|---|---|---|---|
Boundary | Center | Boundary | Center | Boundary | Center | |
Line H | 93 | 264 | 57 | 103 | 60 | 122 |
Line A | 81 | 137 | 54 | 91 | 56 | 96 |
Total result | 264 | 84 | 98 |
Area | Data Source | MAE (mm) | AAE (mm) | RMSE (mm) |
---|---|---|---|---|
Boundary deformation | SAR preliminary CMSF | 47 | 16 | 21 |
UAV LiDAR CMSF | 93 | 56 | 59 | |
Refined CMSF | 47 | 16 | 21 | |
Center deformation | SAR preliminary CMSF | 400 | 123 | 178 |
UAV LiDAR CMSF | 264 | 97 | 114 | |
Refined CMSF | 93 | 48 | 62 | |
Total result | SAR preliminary CMSF | 400 | 96 | 144 |
UAV LiDAR CMSF | 264 | 84 | 98 | |
Refined CMSF | 93 | 39 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Du, W.; Zou, Y.; Zhang, H.; Chai, H.; Wang, W.; Song, X.; Zhang, W. Reconstruction of Coal Mining Subsidence Field by Fusion of SAR and UAV LiDAR Deformation Data. Remote Sens. 2024, 16, 3383. https://doi.org/10.3390/rs16183383
Yang B, Du W, Zou Y, Zhang H, Chai H, Wang W, Song X, Zhang W. Reconstruction of Coal Mining Subsidence Field by Fusion of SAR and UAV LiDAR Deformation Data. Remote Sensing. 2024; 16(18):3383. https://doi.org/10.3390/rs16183383
Chicago/Turabian StyleYang, Bin, Weibing Du, Youfeng Zou, Hebing Zhang, Huabin Chai, Wei Wang, Xiangyang Song, and Wenzhi Zhang. 2024. "Reconstruction of Coal Mining Subsidence Field by Fusion of SAR and UAV LiDAR Deformation Data" Remote Sensing 16, no. 18: 3383. https://doi.org/10.3390/rs16183383
APA StyleYang, B., Du, W., Zou, Y., Zhang, H., Chai, H., Wang, W., Song, X., & Zhang, W. (2024). Reconstruction of Coal Mining Subsidence Field by Fusion of SAR and UAV LiDAR Deformation Data. Remote Sensing, 16(18), 3383. https://doi.org/10.3390/rs16183383