Considering the Effects of Horizontal Heterogeneities in Satellite-Based Large-Scale Statistics of Cloud Optical Properties
Abstract
:1. Introduction
2. Dataset
2.1. Cloud Fields
2.2. Radiation Fields
2.3. Retrieval Tables
3. Proposed Technique
4. Results
5. Summary and Conclusions
- The results showed that the algorithm greatly reduced the heterogeneity-caused biases in 1 km resolution satellite retrievals of cloud optical thickness and effective radius. For individual (20 km)2 cloud fields, the algorithm reduced the typical mean errors of 1D retrievals to below 0.7 in optical thickness and 0.6 µm in effective radius. In most cases, this meant a reduction by a factor of four or more. Overall biases and errors for larger individual areas are expected to drop even further and be close to zero.
- The results indicated that, in addition to removing biases from scene-averaged cloud parameters, the new algorithm also improved our estimates of the cloud variability within each cloud field. Specifically, it significantly reduced (by a factor ranging from two to four) the errors that 3D radiative effects cause in current estimates of the standard deviations of cloud optical thicknesses. We note that this standard deviation is also part of some (e.g., MODIS) Level 3 satellite data products.
- The data revealed that, while the algorithm worked best for 1 km resolution satellite data, it brought about almost as large improvements for 2 km resolution satellite images. Even for 4 km resolution images, the algorithm reduced current errors by factors ranging from about two to six. This implies that the algorithm can help to improve even long-term time series that include data from past or future coarse-resolution (e.g., geostationary) satellites.
- The results indicated that the proposed top-down approach provided more accurate cloud statistics than comparable bottom-up estimations of large-scale statistics based on individual pixel retrievals.
- The results also yielded scientific insights into the impact of cloud heterogeneities in satellite remote sensing. Most importantly, they revealed that 1D bispectral satellite retrievals of cloud droplet size often have biases with opposite signs over vegetated surfaces and over oceanic areas. While nonlinearities tend to result in overestimations of cloud droplet sizes over oceans, they cause underestimations over vegetation if the cloud droplet effective radius is large (≥15 µm) or the sun is low above the horizon.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bony, S.; Colman, R.; Kattsov, V.M.; Allan, R.P.; Bretherton, C.S.; Dufresne, J.-L.; Hall, A.; Hallegatte, S.; Holland, M.M.; Ingram, W.; et al. How Well Do We Understand and Evaluate Climate Change Feedback Processes? J. Clim. 2006, 19, 3445–3482. [Google Scholar] [CrossRef]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. 2011, 369, 4751–4767. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Randall, D.A.; Webb, M.J.; Klein, S.A. Clearing clouds of uncertainty. Nature Clim. Chang. 2017, 7, 674–678. [Google Scholar] [CrossRef]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pe, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.E.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Pincus, R.; Hubanks, P.A.; Platnick, S.; Meyer, K.; Holz, R.E.; Botambekov, D.; Wall, C.J. Updated observations of clouds by MODIS for global model assessment. Earth Syst. Sci. Data 2023, 15, 2483–2497. [Google Scholar] [CrossRef]
- Quaas, J. Approaches to Observe Anthropogenic Aerosol-Cloud Interactions. Curr. Clim. Chang. Rep. 2015, 1, 297–304. [Google Scholar] [CrossRef]
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J. The albedo of Earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef]
- Stephens, G.L. Remote Sensing of the Lower Atmosphere; Oxford University Press: Oxford, UK, 1994; p. 523. [Google Scholar]
- Grosvenor, D.P.; Sourdeval, O.; Zuidema, P.; Ackerman, A.; Alexandrov, M.D.; Bennartz, R.; Boers, R.; Cairns, B.; Chiu, J.C.; Christensen, M.; et al. Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Rev. Geophys. 2018, 56, 409–453. [Google Scholar] [CrossRef]
- McCoy, D.T.; Bender, F.A.; Mohrmann, J.K.C.; Hartmann, D.L.; Wood, R.; Grosvenor, D.P. The global aerosol-cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. J. Geophys. Res. Atmos. 2017, 122, 1779–1796. [Google Scholar] [CrossRef]
- Twomey, S.; Seton, K.J. Inferences of gross microphysical properties of clouds from spectral reflectance measurements. J. Atmos. Sci. 1980, 37, 1065–1069. [Google Scholar] [CrossRef]
- Nakajima, T.; King, M.D. Determination of the optical depth and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci. 1990, 47, 1878–1893. [Google Scholar] [CrossRef]
- Wendling, P. Albedo and reflected radiance of horizontally inhomogeneous clouds. J. Atmos. Sci. 1977, 34, 642–650. [Google Scholar] [CrossRef]
- Reynolds, D.W.; McKee, T.B.; Danielson, K.S. Effects of cloud size and cloud particles on satellite-observed reflected brightness. J. Atmos. Sci. 1978, 35, 160–164. [Google Scholar] [CrossRef]
- Cannon, J.C. Line transfer in two dimensions. Astrophys. J. 1970, 161, 255–264. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. A method for analyzing how various parts of clouds influence each other’s brightness. J. Geophys. Res. 2003, 108, 4706. [Google Scholar] [CrossRef]
- Fauchez, T.; Platnick, S.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F. Cirrus horizontal heterogeneity and 3D radiative effects on cloud optical property retrievals from MODIS near to thermal infrared channels as a function of spatial resolution. J. Geophys. Res. 2018, 123, 11141–11153. [Google Scholar] [CrossRef]
- Loeb, N.G.; Várnai, T.; Winker, D.M. Influence of subpixel-scale cloud-top structure on reflectances from overcast stratiform cloud layers. J. Atmos. Sci. 1998, 55, 2960–2973. [Google Scholar] [CrossRef]
- Loeb, N.G.; Coakley, J.A. Inference of marine stratus cloud optical depths from satellite measurements: Does 1D theory apply? J. Clim. 1998, 11, 215–233. [Google Scholar] [CrossRef]
- Seethala, C.; Horváth, A. Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res. 2010, 115, D13202. [Google Scholar] [CrossRef]
- Grosvenor, D.P.; Wood, R. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds. Atmos. Chem. Phys. 2014, 14, 7291–7321. [Google Scholar] [CrossRef]
- Cahalan, R.F.; Snider, J.B. Marine stratocumulus structure. Remote Sens. Environ. 1989, 28, 95–107. [Google Scholar] [CrossRef]
- Marshak, A.; Davis, A.; Wiscombe, W.; Cahalan, R.F. Radiative smoothing in fractal clouds. J. Geophys. Res. 1995, 100, 26247–26261. [Google Scholar] [CrossRef]
- Davis, A.; Marshak, A.; Cahalan, R.F.; Wiscombe, W.J. The Landsat scale break in stratocumulus as a three-dimensional radiative transfer effect: Implications for cloud remote sensing. J. Atmos. Sci. 1997, 54, 241–260. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Marshak, A.; Cahalan, R.; Wen, G. Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation function. J. Geophys. Res. 2000, 105, 14777–14788. [Google Scholar] [CrossRef]
- Várnai, T. Influence of three-dimensional radiative effects on the spatial distribution of shortwave cloud reflection. J. Atmos. Sci. 2000, 57, 216–229. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Observations of three-dimensional radiative effects that influence MODIS cloud optical depth retrievals. J. Atmos. Sci. 2002, 59, 1607–1618. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Observations of three-dimensional radiative effects that influence satellite retrievals of cloud properties. Quart. J. Hung. Meteor. Serv. 2002, 106, 265–278. [Google Scholar]
- Vant-Hull, B.; Marshak, A.; Remer, L.; Li, Z. The effects of scattering angle and cumulus cloud geometry on satellite retrievals of cloud drop effective radius. IEEE Geosci. Remote Sens. Lett. 2007, 45, 1039–1045. [Google Scholar] [CrossRef]
- Marshak, A.; Platnick, S.; Várnai, T.; Wen, G.; Cahalan, R.F. Impact of 3D radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res. 2006, 111, DO9207. [Google Scholar] [CrossRef]
- Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A.S.; Di Girolamo, L.; Marshak, A.; Meyer, K. A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method. J. Geophys. Res. 2016, 121, 7007–7025. [Google Scholar] [CrossRef]
- Zhang, Z.; Platnick, S. An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J. Geophys. Res. 2011, 116, D20215. [Google Scholar] [CrossRef]
- Liang, L.; Di Girolamo, L.; Sun, W. Bias in MODIS cloud drop effective radius for oceanic water clouds as deduced from optical thickness variability across scattering angle. J. Geophys. Res. 2015, 120, 7661–7681. [Google Scholar] [CrossRef]
- Marshak, A.; Knyazikhin, Y.; Várnai, T. A new spectrally-invariant approach to the remote sensing of inhomogeneous clouds. Front. Remote Sens. 2024, 5, 1392596. [Google Scholar] [CrossRef]
- Martin, W.; Cairns, B.; Bal, G. Adjoint methods for adjusting three-dimensional atmosphere and surface properties to fit multi-angle/multi-pixel polarimetric measurements. J. Quant. Spectrosc. Rad. Transf. 2014, 144, 68–85. [Google Scholar] [CrossRef]
- Levis, A.; Schechner, Y.Y.; Davis, A.B.; Loveridge, J. Multi-View Polarimetric Scattering Cloud Tomography and Retrieval of Droplet Size. Remote Sens. 2020, 12, 2831. [Google Scholar] [CrossRef]
- Forster, L.; Davis, A.B.; Diner, D.J.; Mayer, B. Toward Cloud Tomography from Space Using MISR and MODIS: Locating the “Veiled Core” in Opaque Convective Clouds. J. Atmos. Sci. 2021, 78, 155–166. [Google Scholar] [CrossRef]
- Doicu, A.; Efremenko, D.; Trautmann, T. Cloud tomographic retrieval algorithms. I: Surrogate minimization method. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107954. [Google Scholar] [CrossRef]
- Doicu, A.; Efremenko, D.; Trautmann, T. Cloud tomographic retrieval algorithms. II: Adjoint method. J. Quant. Spectrosc. Rad. Transf. 2022, 285, 108177. [Google Scholar] [CrossRef]
- Loveridge, J.; Levis, A.; Di Girolamo, L.; Holodovsky, V.; Forster, L.; Davis, A.B.; Schechner, Y.Y. Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer—Part 1: Model description and Jacobian calculation. Atmos. Meas. Tech. 2023, 16, 1803–1847. [Google Scholar] [CrossRef]
- Loveridge, J.; Levis, A.; Di Girolamo, L.; Holodovsky, V.; Forster, L.; Davis, A.B.; Schechner, Y.Y. Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer—Part 2: Local optimization. Atmos. Meas. Tech. 2023, 16, 3931–3957. [Google Scholar] [CrossRef]
- Faure, T.; Isaka, H.; Guillemet, B. Neural network retrieval of cloud parameters from high-resolution multispectral radiometric data—A feasibility study. Remote Sens. Environ. 2002, 80, 285–296. [Google Scholar] [CrossRef]
- Faure, T.; Isaka, H.; Guillemet, B. Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: Feasibility study. Remote Sens. Environ. 2001, 77, 123–138. [Google Scholar] [CrossRef]
- Cornet, C.; Isaka, H.; Guillemet, B.; Szczap, F. Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study. J. Geophys. Res. 2004, 109, D12203. [Google Scholar] [CrossRef]
- Evans, K.F.; Marshak, A.; Várnai, T. The potential for improved cloud optical depth retrievals from the multiple directions of MISR. J. Atmos. Sci. 2008, 65, 3179–3196. [Google Scholar] [CrossRef]
- Okamura, R.; Iwabuchi, H.; Schmidt, K.S. Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning. Atmos. Meas. Tech. 2017, 10, 4747–4759. [Google Scholar] [CrossRef]
- Platnick, S.; Platnick, S.; Meyer, K.G.; Hubanks, P.; Holz, R.; Ackerman, S.A.; Heidinger, A.K. VIIRS Atmosphere L3 Cloud Properties Product. Version-1.1; NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC); Goddard Space Flight Center: Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Schmetz, J. On the parameterization of the radiative properties of broken clouds. Tellus A Dyn. Meteorol. Oceanogr. 1984, 36A, 417–432. [Google Scholar] [CrossRef]
- Kobayashi, T. Parameterization of Reflectivity for Broken Cloud Fields. J. Atmos. Sci. 1988, 45, 3034–3045. [Google Scholar] [CrossRef]
- Welch, R.M.; Wielicki, B.A. Reflected Fluxes for Broken Clouds over a Lambertian Surface. J. Atmos. Sci. 1989, 46, 1384–1395. [Google Scholar] [CrossRef]
- Bréon, F. Reflectance of Broken Cloud Fields: Simulation and Parameterization. J. Atmos. Sci. 1992, 49, 1221–1232. [Google Scholar] [CrossRef]
- Barker, H.W.; Liu, D. Inferring Optical Depth of Broken Clouds from Landsat Data. J. Clim. 1995, 8, 2620–2630. [Google Scholar] [CrossRef]
- Iwabuchi, H. Retrieval of cloud optical thickness and effective radius using multispectral remote sensing and accounting for 3D effects. In Light Scattering Reviews 2; Kokhanovsky, A.A., Ed.; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2007; pp. 97–124. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Hayasaka, T. Effects of cloud horizontal inhomogeneity on the optical thickness retrieved from moderate-resolution satellite data. J. Atmos. Sci. 2002, 59, 2227–2242. [Google Scholar] [CrossRef]
- Stevens, B.; Moeng, C.-H.; Ackerman, A.S.; Bretherton, C.S.; Chlond, A.; de Roode, S.; Edwards, J.; Golaz, J.-C.; Jiang, H.; Khairoutdinov, M.; et al. Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus. Mon. Weather Rev. 2005, 133, 1443–1462. [Google Scholar] [CrossRef]
- Savic-Jovcic, V.; Stevens, B. The Structure and Mesoscale Organization of Precipitating Stratocumulus. J. Atmos. Sci. 2008, 65, 1587–1605. [Google Scholar] [CrossRef]
- Wen, G.; Marshak, A.; Várnai, T.; Levy, R. Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances. J. Geophys. Res. Atmos. 2016, 121, 9661–9674. [Google Scholar] [CrossRef] [PubMed]
- Bony, S.; Schulz, H.; Vial, J.; Stevens, B. Sugar, gravel, fish and flowers: Dependence of mesoscale patterns of trade-wind clouds on environmental conditions. Geophys. Res. Lett. 2020, 47, e2019GL085988. [Google Scholar] [CrossRef]
- Rasp, S.; Schulz, H.; Bony, S.; Stevens, B. Combining Crowdsourcing and Deep Learning to Explore the Mesoscale Organization of Shallow Convection. Bull. Amer. Meteor. Soc. 2020, 101, E1980–E1995. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Cambridge, MA, USA, 1983; p. 390. [Google Scholar]
- Platnick, S. Vertical photon transport in cloud remote sensing problems. J. Geophys. Res. 2000, 105, 22919–22935. [Google Scholar] [CrossRef]
- Bréon, F.M.; Doutriaux-Boucher, M. A comparison of cloud droplet radii measured from space. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1796–1805. [Google Scholar] [CrossRef]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef]
- Cahalan, R.F.; Oreopoulos, L.; Marshak, A.; Evans, K.F.; Davis, A.B.; Pincus, R.; Yetzer, K.H.; Mayer, B.; Davies, R.; Ackerman, T.P.; et al. The International Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor. Soc. 2005, 86, 1275–1293. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Marshak, A.; Cahalan, R.F.; Várnai, T.; Davis, A.B.; Macke, A. New Directions in 3D Atmospheric Radiative Transfer. EOS 2006, 87, 52. [Google Scholar] [CrossRef]
- Várnai, T. Multiyear statistics of 2D shortwave radiative effects at three ARM sites. J. Atmos. Sci. 2010, 67, 3757–3762. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A.; Yang, W. Multi-satellite aerosol observations in the vicinity of clouds. Atmos. Chem. Phys. 2013, 13, 3899–3908. [Google Scholar] [CrossRef]
- Marchuk, G.I.; Mikhailov, G.A.; Nazaraliev, M.A.; Darbinjan, R.A.; Kargin, B.A.; Elepov, B.S. The Monte Carlo Methods in Atmospheric Optics; Springer: New York, NY, USA, 1980; p. 208. [Google Scholar]
- Stamnes, K.; Tsay, S.-C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ackerman, A.S.; Feingold, G.; Platnick, S.; Pincus, R.; Xue, H. Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations. J. Geophys. Res. 2012, 117, D19208. [Google Scholar] [CrossRef]
- Fu, D.; Di Girolamo, L.; Liang, L.; Zhao, G. Regional biases in MODIS marine liquid water cloud drop effective radius deduced through fusion with MISR. J. Geophys. Res. 2019, 124, 13182–13196. [Google Scholar] [CrossRef]
- Cahalan, R.F.; Ridgway, W.; Wiscombe, W.J.; Bell, T.L.; Snider, J.B. The albedo of fractal stratocumulus clouds. J. Atmos. Sci. 1994, 51, 2434–2455. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Cahalan, R.F. Cloud Inhomogeneity from MODIS. J. Clim. 2005, 18, 5110–5124. [Google Scholar] [CrossRef]
- Davis, A.; Marshak, A.; Gerber, H.; Wiscombe, W. Horizontal Structure of Marine Boundary-Layer Clouds from Cm– to Km–Scales. J. Geophys. Res. 1999, 104, 6123–6144. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud Detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.; Wind, G.; Holz, R.E.; Amarasinghe, N.; Hubanks, P.A.; Marchant, B.; Dutcher, S.; Veglio, P. The NASA MODIS-VIIRS Continuity Cloud Optical Properties Products. Remote Sens. 2021, 13, 2. [Google Scholar] [CrossRef]
- Chiu, J.Y.C.; Yang, K. Three-dimensional radiative transfer emulation using machine learning techniques. In Proceedings of the 104th Annual Meeting of the American Meteorological Society, Baltimore, MD, USA, 28 January–1 February 2024. [Google Scholar]
Θ0 | Most Helpful Parameters | |||
---|---|---|---|---|
i | ii | iii | iv | |
15° | CF | |||
45° | ||||
75° | Aτ |
Θ0 | Bottom-Up Approach | Top-Down Approach | ||
---|---|---|---|---|
R2 | MAE | R2 | MAE | |
15° | 0.53 | 0.99 | 0.81 | 0.65 |
45° | 0.58 | 0.85 | 0.85 | 0.53 |
75° | 0.10 | 0.63 | 0.43 | 0.43 |
Θ0 | > 0.4 Only | Entire Scene | ||
---|---|---|---|---|
R2 | MAE/MAE1D | R2 | MAE/MAE1D | |
15° | 0.81 | 0.25 | 0.88 | 0.33 |
45° | 0.85 | 0.24 | 0.83 | 0.41 |
75° | 0.43 | 0.64 | 0.69 | 0.20 |
Resolution [km] | Θ0 | ||||||
---|---|---|---|---|---|---|---|
R2 | MAE | Bias | MAE1D | Bias1D | True Mean | ||
1 | 15° | 0.81 | 0.65 | 0.0 | 2.61 | −2.61 | 4.65 |
45° | 0.85 | 0.53 | 0.0 | 2.17 | −2.16 | ||
75° | 0.43 | 0.43 | 0.0 | 0.67 | 0.38 | ||
2 | 15° | 0.74 | 0.53 | 0.0 | 1.70 | −1.70 | 3.23 |
45° | 0.81 | 0.57 | 0.0 | 1.76 | −1.75 | ||
75° | 0.38 | 0.43 | 0.0 | 0.59 | −0.42 | ||
4 | 15° | 0.71 | 0.53 | 0.0 | 1.46 | −1.46 | 2.74 |
45° | 0.77 | 0.53 | 0.0 | 1.38 | −1.36 | ||
75° | 0.63 | 0.51 | 0.0 | 0.92 | −0.85 |
Resolution [km] | Θ0 | στ | |||||
---|---|---|---|---|---|---|---|
R2 | MAE | Bias | MAE1D | Bias1D | True Mean στ | ||
1 | 15° | 0.84 | 1.18 | 0.0 | 4.70 | −4.70 | 6.24 |
45° | 0.81 | 1.14 | 0.0 | 4.56 | −4.56 | ||
75° | 0.66 | 0.92 | 0.0 | 2.06 | 1.53 | ||
2 | 15° | 0.74 | 0.71 | 0.0 | 2.17 | −2.17 | 3.39 |
45° | 0.79 | 0.82 | 0.0 | 2.64 | −2.64 | ||
75° | 0.74 | 0.59 | 0.0 | 1.11 | −0.17 | ||
4 | 15° | 0.75 | 0.51 | 0.0 | 1.27 | −1.27 | 1.87 |
45° | 0.70 | 0.53 | 0.0 | 1.32 | −1.32 | ||
75° | 0.70 | 0.45 | 0.0 | 0.78 | −0.61 |
Resolution [km] | Θ0 | ||||||
---|---|---|---|---|---|---|---|
R2 | MAE | Bias | MAE1D | Bias1D | True Mean | ||
1 | 15° | 0.70 | 0.58 | 0.0 | 3.52 | 3.52 | 8.00 |
45° | 0.65 | 0.56 | 0.0 | 0.91 | −0.08 | ||
75° | 0.90 | 0.29 | 0.0 | 2.52 | −2.46 | ||
2 | 15° | 0.47 | 0.62 | 0.0 | 2.78 | 2.77 | 8.00 |
45° | 0.53 | 1.15 | 0.0 | 4.72 | 4.69 | ||
75° | 0.86 | 0.40 | 0.0 | 2.32 | −2.14 | ||
4 | 15° | 0.26 | 0.55 | 0.0 | 2.34 | 2.34 | 8.00 |
45° | 0.51 | 2.10 | 0.0 | 12.3 | 12.3 | ||
75° | 0.83 | 0.50 | 0.0 | 2.56 | −2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Várnai, T.; Marshak, A. Considering the Effects of Horizontal Heterogeneities in Satellite-Based Large-Scale Statistics of Cloud Optical Properties. Remote Sens. 2024, 16, 3388. https://doi.org/10.3390/rs16183388
Várnai T, Marshak A. Considering the Effects of Horizontal Heterogeneities in Satellite-Based Large-Scale Statistics of Cloud Optical Properties. Remote Sensing. 2024; 16(18):3388. https://doi.org/10.3390/rs16183388
Chicago/Turabian StyleVárnai, Tamás, and Alexander Marshak. 2024. "Considering the Effects of Horizontal Heterogeneities in Satellite-Based Large-Scale Statistics of Cloud Optical Properties" Remote Sensing 16, no. 18: 3388. https://doi.org/10.3390/rs16183388
APA StyleVárnai, T., & Marshak, A. (2024). Considering the Effects of Horizontal Heterogeneities in Satellite-Based Large-Scale Statistics of Cloud Optical Properties. Remote Sensing, 16(18), 3388. https://doi.org/10.3390/rs16183388