A Novel Method for Simplifying the Distribution Envelope of Green Tide for Fast Drift Prediction in the Yellow Sea, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Data Processing
2.2.1. Satellite Data
2.2.2. Green Tide Extraction
2.2.3. Side Lengths and Vertex Angles of the Envelope
3. Method
3.1. Method for Building Simplification Model
3.2. Accuracy Assessment
3.2.1. Simplification Error
3.2.2. Simplification Rate
4. Results
4.1. Simplification Model Based on Azimuth Difference and Side Length (SM-ADSL)
4.1.1. Manually Simplifying the Envelope
4.1.2. Building the Simplification Model
4.2. Model Application Process
4.3. Simplification Model Evaluation
4.4. The Process of Green Tide Development and Drift
5. Discussion
5.1. Side Lengths and Angles of the Distribution Envelope Simplified by SM-ADSL
5.2. Comparison Analysis with the Existing Methods
5.3. Drift Prediction Analysis
5.4. The Impact of Monitoring Results from Different Satellite Sources on Decision-Making Plan Formulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, S.; Wang, F.; Li, C.; Qin, S.; Zhou, M.; Ding, L.; Pang, S.; Duan, D.; Wang, G.; Yin, B.; et al. Emerging challenges: Massive green algae blooms in the Yellow Sea. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, J.; Zou, B.; Wang, Q.; Zeng, T.; Guo, M. The satellite remote sensing system used in emergency response monitoring for Entermorpha prolifera disaster and its application. Acta Oceanol. Sin. 2009, 31, 52–64. [Google Scholar]
- Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller Karger, F.E.; Liu, J.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Ocean. 2010, 115, C05017. [Google Scholar] [CrossRef]
- Zhan, Y.; Qiu, Z.; Wang, Y.; Su, Y.; Li, Y.; Cui, Y.; Qu, S.; Wang, P.; Rong, X. Long-Term Spatiotemporal Characteristics of Ulva prolifera Green Tide and Effects of Environmental Drivers on Its Monitoring by Satellites: A Case Study in the Yellow Sea, China, from 2008 to 2023. J. Mar. Sci. Eng. 2024, 12, 630. [Google Scholar] [CrossRef]
- Zheng, X.; Gao, Z.; Xu, F.; Ning, J.; Song, D.; Zheng, B. Study of remote sensing monitoring and comparison of green tide in the Yellow Sea based on VB-FAH index. Mar. Sci. 2017, 41, 71–79. [Google Scholar]
- Li, D.; Gao, Z.; Song, D.; Shang, W.; Jiang, X. Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing. Estuar. Coast. Shelf Sci. 2019, 227, 106335. [Google Scholar] [CrossRef]
- Li, D.; Gao, Z.; Zheng, X.; Wang, N. Analysis of the interannual variation characteristics of the northernmost drift position of the green tide in the Yellow Sea. Environ. Sci. Pollut. Res. 2020, 27, 35137–35147. [Google Scholar] [CrossRef]
- Yi, D.; Juan, H.; Tingwei, C.; Zhenwen, W.; Yi, Z.; Conghua, C.; Chao, C.; Yanfang, X. The decomposition method of MODIS images Enteromorpha mixed pixels based on the relation of NDVI to abundance. Haiyang Xuebao 2015, 37, 123–131. [Google Scholar]
- Ye, N.; Zhang, X.; Mao, Y.; Liang, C.; Xu, D.; Zou, J.; Zhuang, Z.; Wang, Q. 'Green tides' are overwhelming the coastline of our blue planet: Taking the world's largest example. Ecol. Res. 2011, 26, 477–485. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, D.; Anderson, D.M.; Valiela, I. Introduction to the Special Issue on green tides in the Yellow Sea. Estuar. Coast. Shelf Sci. 2015, 163, 3–8. [Google Scholar] [CrossRef]
- Sun, M.; Li, Y.; Ren, Y.; Chen, Y. Redefine Sustainable Fisheries Targets Under the Impact of the Southern Yellow Sea Green Tide: Mitigating the Recurring Surge in Natural Mortality. Front. Mar. Sci. 2022, 9, 813024. [Google Scholar] [CrossRef]
- Gu, X.F.; Chen, X.F.; Yin, Q.; Li, Z.Q.; Xu, H.; Shao, Y.; Li, Z.W. Stereoscopic Remote Sensing Used in Monitoring Enteromorpha Prolifra Disaster in Chinese Yellow Sea. Spectrosc. Spectr. Anal. 2011, 31, 1627. [Google Scholar]
- Zou, Z.; Chen, C.; Liu, Z.; Zhang, Z.; Liang, J.; Chen, H.; Wang, L. Extraction of Aquaculture Ponds along Coastal Region Using U2-Net Deep Learning Model from Remote Sensing Images. Remote Sens. 2022, 14, 4001. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Son, Y.B.; Min, J.; Ryu, J. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data. Ocean Sci. J. 2012, 47, 359–375. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, D.; Li, J.; Qiu, Z.; Wang, S.; He, Y. Remote Sensing Algorithm for Detecting Green Tide in China Coastal Waters Based on GF1-WFV and HJ-CCD Data. Acta Opt. Sin. 2016, 36, 28–36. [Google Scholar]
- Huang, J.; Wu, L.J.; Gao, S.; Cao, Y.J.; Bai, T. Numerical simulation of emergency drift for green tide in the Yellow Sea. Mar. Forecast. 2011, 28, 25–32. [Google Scholar]
- Wu, L.; Huang, J.; Ding, Y.; Liu, G.; Huang, S.; Gao, S.; Yuan, C.; Xu, J.; Wu, P.; Huang, R.; et al. Analysis on the causes of massive stranding of Yellow Sea green tide on Lianyungang and Rizhao coasts in 2022. J. Oceanol. Limnol. 2024, 42, 816–830. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L. Numerical Study on the Massive Outbreak of the Ulva prolifera Green Tides in the Southwestern Yellow Sea in 2021. J. Mar. Sci. Eng. 2021, 9, 1167. [Google Scholar] [CrossRef]
- Cao, C.; Huang, J.; Gao, S.; Wu, L. Remote Sensing Monitoring and Forecasting and Early Warning System for Yellow Sea Green Tide Disaster Emergency; Ocean Press: Beijing, China, 2017. [Google Scholar]
- Wang, Z.; Xiao, J.; Yuan, C.; Miao, X.; Fan, S.; Fu, M.; Xia, T.; Zhang, X. The drifting and spreading mechanism of floating Ulva mass in the waterways of Subei shoal, the Yellow Sea of China—Application for abating the world’s largest green tides. Mar. Pollut. Bull. 2023, 190, 114789. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, C.; Wang, M.; Shang, S.; Wilson, C. Floating Algae Blooms in the East China Sea. Geophys. Res. Lett. 2017, 44, 11501–11509. [Google Scholar] [CrossRef]
- Ma, Y.; Wong, K.; Tsou, J.Y.; Zhang, Y. Investigating Spatial Distribution of Green-Tide in the Yellow Sea in 2021 Using Combined Optical and SAR Images. J. Mar. Sci. Eng. 2022, 10, 127. [Google Scholar] [CrossRef]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [Google Scholar] [CrossRef]
- Mcmaster, R.B. Automated Line Generalization. Cartogr. Int. J. Geogr. Inf. Geovis. 1987, 24, 74–111. [Google Scholar] [CrossRef]
- Saalfeld, A. Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm. Cartogr. Geogr. Inf. Sci. 1999, 26, 7–18. [Google Scholar] [CrossRef]
- Dal Santo, M.A.; de Oliveira, F.H.; Wosny, G.C. Algorithms for Automated Line Generalization in GIS. In Proceedings of the 28th Annual Esri User Conference, San Diego, CA, USA, 4–8 August 2008. [Google Scholar]
- Wu, S.T.; Marquez, M.R.G. A Non-Self-Intersection Douglas-Peucker Algorithm; IEEE Computer Society: Sao Carlos, Brazil, 2003. [Google Scholar]
- Li, Z.; Sui, H. An Integrated Technique for Automated Generalization of Contour Maps. Cartogr. J. 2000, 37, 29–37. [Google Scholar] [CrossRef]
- Naimie, C.E.; Blain, C.A.; Lynch, D.R. Seasonal mean circulation in the Yellow Sea—A model-generated climatology. Cont. Shelf Res. 2001, 21, 667–695. [Google Scholar] [CrossRef]
- Zhao, B.; Fang, G.; Cao, D. Numerical simulation of tide and tidal current in the Bohai, Yellow and East China Seas. Acta Oceanol. Sin. 1999, 16, 1–10. [Google Scholar]
- Liu, A.; Yin, X.; Lu, M. The tide characteristics of the Huanghai Sea. J. Oceanogr. Huanghai Bohai Seas 1983, 1, 1–7. [Google Scholar]
- Wu, H.; Xu, C.; Gao, X.; Ji, H. Research on high & low tide time error characteristics in the radial sand ridges area in North Jiangsu Province. Mar. Sci. Bull. 2016, 35, 163–169. [Google Scholar]
- Jiang, X.; Gao, Z.; Zhang, Q.; Wang, Y.; Tian, X.; Shang, W.; Xu, F. Remote sensing methods for biomass estimation of green algae attached to nursery-nets and raft rope. Mar. Pollut. Bull. 2020, 150, 110678. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Keesing, J.K.; Xing, Q.; Shi, P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 2009, 58, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Keesing, J.K.; Dong, Z.; Zhen, Y.; Di, B.; Shi, Y.; Fearns, P.; Shi, P. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar. Pollut. Bull. 2010, 60, 1423–1432. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, J.; Fan, S.; Li, Y.; Liu, X.; Liu, D. Who made the world’s largest green tide in China?—An integrated study on the initiation and early development of the green tide in Yellow Sea. Limnol. Oceanogr. 2015, 60, 1105–1117. [Google Scholar] [CrossRef]
- Available online: http://www.nsoas.org.cn/news/content/2018-11/23/44_696.html (accessed on 23 November 2018).
- Available online: https://zhuanlan.zhihu.com/p/686897019 (accessed on 13 March 2024).
- Men, Y.; Liu, Y.; Ma, Y.; Wong, K.P.; Tsou, J.Y.; Zhang, Y. Remote Sensing Monitoring of Green Tide Disaster Using MODIS and GF-1 Data: A Case Study in the Yellow Sea. J. Mar. Sci. Eng. 2023, 11, 2212. [Google Scholar] [CrossRef]
- Xu, S.; Yu, T.; Xu, J.; Pan, X.; Shao, W.; Zuo, J.; Yu, Y. Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery. Remote Sens. 2023, 15, 2196. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y.; Fang, Z.; Cui, X.; Liang, J.; Song, X. Spatiotemporal Patterns and Morphological Characteristics of Ulva prolifera Distribution in the Yellow Sea, China in 2016–2018. Remote Sens. 2019, 11, 445. [Google Scholar] [CrossRef]
- Yuan, Y.B. Study of Daytime Sea Fog and Atmospheric Visibility over the Yellow Sea Based on GOCI Satellite Data. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2017. [Google Scholar]
- Zhang, S.; Xie, S.; Liu, Q.; Yang, Y.; Wang, X.; Ren, Z. Seasonal Variations of Yellow Sea Fog: Observations and Mechanisms. J. Clim. 2009, 22, 6758–6772. [Google Scholar] [CrossRef]
- Cui, H.; Chen, J.; Jiang, X.; Fu, Y.; Qiao, F. A novel quantitative analysis for diurnal dynamics of Ulva prolifera patch in the Yellow Sea from Geostationary Ocean Color Imager observation. Front. Mar. Sci. 2023, 10, 1177997. [Google Scholar] [CrossRef]
- Son, Y.B.; Choi, B.; Kim, Y.H.; Park, Y. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using GOCI satellite data and Lagrangian transport simulations. Remote Sens. Environ. 2015, 156, 21–33. [Google Scholar] [CrossRef]
- Bao, M.; Guan, W.; Yang, Y.; Cao, Z.; Chen, Q. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012. Estuar. Coast. Shelf Sci. 2015, 163, 9–16. [Google Scholar] [CrossRef]
- Cui, T.W.; Liang, X.J.; Gong, J.L.; Tong, C.; Xiao, Y.F.; Liu, R.J.; Zhang, X.; Zhang, J. Assessing and refining the satellite-derived massive green macro-algal coverage in the Yellow Sea with high resolution images. ISPRS-J. Photogramm. Remote Sens. 2018, 144, 315–324. [Google Scholar] [CrossRef]
- Cui, T.; Zhang, J.; Sun, L.; Jia, Y.; Zhao, W.; Wang, Z.; Meng, J. Satellite monitoring of massive green macroalgae bloom (GMB): Imaging ability comparison of multi-source data and drifting velocity estimation. Int. J. Remote Sens. 2012, 33, 5513–5527. [Google Scholar] [CrossRef]
- An, D.; Yu, D.; Zheng, X.; Zhou, Y.; Meng, L.; Xing, Q. Monitoring the Dissipation of the Floating Green Macroalgae Blooms in the Yellow Sea (2007–2020) on the Basis of Satellite Remote Sensing. Remote Sens. 2021, 13, 3811. [Google Scholar] [CrossRef]
Satellite/Sensor | Date | Object | Stage |
---|---|---|---|
HY-1C/CZI HJ-2B/CCD | 10 May 2021 | Process analysis, comparative analysis | Emergence |
HY-1D/CZI | 17 May 2021 | Algorithm development, application, validation, comparative analysis, and process analysis | Development |
HY-1C/CZI | 25 May 2021 | Process analysis | Development |
HY-1D/CZI HJ-2A/CCD | 6 June 2021 | Algorithm application, validation, comparative analysis, and process analysis | Explosion |
HY-1C/CZI | 9 July 2021 | Algorithm application, validation, comparative analysis, and process analysis | Explosion |
HY-1C/CZI | 18 July 2021 | Process analysis | Decline |
HY-1C/CZI | 5 August 2021 | Algorithm application, validation, comparative analysis, and process analysis | Decline |
HY-1C/CZI | 25 August 2021 | Process analysis | Extinction |
Date | Vertex Number of Original Envelope | Vertex Number of Simplified Envelope | Simplification Rate | Area of Original Envelope/km2 | Area of Simplified Envelope/km2 | Overall Error | Algebraic Error |
---|---|---|---|---|---|---|---|
17 May 2021 | 34,704 | 218 | 159 | 8216 | 8212 | 0.75% | −0.05% |
6 June 2021 | 58,830 | 391 | 150 | 43,708 | 43,729 | 0.25% | 0.05% |
9 July 2021 | 101,881 | 602 | 169 | 42,501 | 42,558 | 0.42% | 0.13% |
5 August 2021 | 35,510 | 225 | 158 | 8615 | 8606 | 0.65% | −0.10% |
Date | Before Simplification | After Simplification | ||
---|---|---|---|---|
Number of Vertices | Time Required | Number of Vertices | Time Required | |
17 May 2021 | 34,704 | 12 m and 56 s | 218 | 1 m and 8 s |
6 June 2021 | 58,830 | 20 m and 18 s | 391 | 1 m and 51 s |
9 July 2021 | 101,881 | 29 m and 45 s | 602 | 2 m and 24 s |
5 August 2021 | 35,510 | 12 m and 12 s | 225 | 1 m and 10 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Gao, S.; Huang, G.; Wu, L.; Wang, Z.; Yuan, C.; Yu, Z. A Novel Method for Simplifying the Distribution Envelope of Green Tide for Fast Drift Prediction in the Yellow Sea, China. Remote Sens. 2024, 16, 3520. https://doi.org/10.3390/rs16183520
Ding Y, Gao S, Huang G, Wu L, Wang Z, Yuan C, Yu Z. A Novel Method for Simplifying the Distribution Envelope of Green Tide for Fast Drift Prediction in the Yellow Sea, China. Remote Sensing. 2024; 16(18):3520. https://doi.org/10.3390/rs16183520
Chicago/Turabian StyleDing, Yi, Song Gao, Guoman Huang, Lingjuan Wu, Zhiyong Wang, Chao Yuan, and Zhigang Yu. 2024. "A Novel Method for Simplifying the Distribution Envelope of Green Tide for Fast Drift Prediction in the Yellow Sea, China" Remote Sensing 16, no. 18: 3520. https://doi.org/10.3390/rs16183520
APA StyleDing, Y., Gao, S., Huang, G., Wu, L., Wang, Z., Yuan, C., & Yu, Z. (2024). A Novel Method for Simplifying the Distribution Envelope of Green Tide for Fast Drift Prediction in the Yellow Sea, China. Remote Sensing, 16(18), 3520. https://doi.org/10.3390/rs16183520