Source Range Estimation Using Linear Frequency-Difference Matched Field Processing in a Shallow Water Waveguide
Abstract
:1. Introduction
2. Theory and Algorithms
2.1. The Conventional MFP Method
2.2. The LFDMFP Method
2.3. Cost Function
2.3.1. The Cost Function of the Range Estimation
2.3.2. The Cost Function of the Depth Estimation
2.4. Algorithm
Algorithm 1 LFDMFP |
Input: Time domain pressure recorded by VLA and sound speed profiles Output: Source range and source depth 1: Compute the power spectrum using the time domain pressure recorded by the VLA and select the two adjacent frequencies and and their spectra . 2: Divide the search grid and compute the replica field using the propagation model. . . . . 5: Compute the source range: . 6: Compute the source depth: . |
3. Simulation and Performance Analysis
3.1. The Influence of the SNR
3.2. The Influence of the Frequency Difference
4. Experimental Results
4.1. Sound Propagation Experiment in Laoshan Bay
4.2. Sound Propagation Experiment in the South China Sea
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bucker, H.P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am. 1976, 59, 368–373. [Google Scholar] [CrossRef]
- Baggeroer, A.; Kuperman, W.; Mikhalevsky, P. An overview of matched field methods in ocean acoustics. IEEE J. Ocean. Eng. 1993, 18, 401–424. [Google Scholar] [CrossRef]
- Williamson, L.; Haapaniemi, E.; Dowling, D. Sonar Performance Improvements Using First Reflections in Matched-field Processing. Nav. Eng. J. 2014, 126, 125–129. [Google Scholar]
- Johnson, D. The application of spectral estimation methods to bearing estimation problems. Proc. IEEE 1982, 70, 1018–1028. [Google Scholar] [CrossRef]
- Baggeroer, A.B.; Kuperman, W.A.; Schmidt, H. Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem. J. Acoust. Soc. Am. 1988, 83, 571–587. [Google Scholar] [CrossRef]
- Schmidt, H.; Baggeroer, A.B.; Kuperman, W.A.; Scheer, E.K. Environmentally tolerant beamforming for high-resolution matched field processing: Deterministic mismatch. J. Acoust. Soc. Am. 1990, 88, 1851–1862. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Westwood, E.K. Broadband matched-field source localization. J. Acoust. Soc. Am. 1992, 91, 2777–2789. [Google Scholar] [CrossRef]
- Shang, E.C. Source depth estimation in waveguides. J. Acoust. Soc. Am. 1985, 77, 1413–1418. [Google Scholar] [CrossRef]
- Yang, T.C. A method of range and depth estimation by modal decomposition. J. Acoust. Soc. Am. 1987, 82, 1736–1745. [Google Scholar] [CrossRef]
- Yang, T.C.; Yates, T. Matched-beam processing: A synthesis of conventional beamforming and matched-field processing. J. Acoust. Soc. Am. 1996, 100, 2852. [Google Scholar] [CrossRef]
- Yang, T.C.; Yates, T. Matched-beam processing: Application to a horizontal line array in shallow water. J. Acoust. Soc. Am. 1998, 104, 1316–1330. [Google Scholar] [CrossRef]
- Yan, H.; Xu, J.; Long, T.; Zhang, X. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing. Sensors 2015, 15, 25577–25591. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, N.; Gao, D.; Gao, B. Source-Space Compressive Matched Field Processing for Source Localization. Chin. Phys. Lett. 2016, 33, 044301. [Google Scholar] [CrossRef]
- Gemba, K.L.; Hodgkiss, W.S.; Gerstoft, P. Adaptive and compressive matched field processing. J. Acoust. Soc. Am. 2017, 141, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Worthmann, B.M.; Song, H.C.; Dowling, D.R. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processinga). J. Acoust. Soc. Am. 2015, 138, 3549–3562. [Google Scholar] [CrossRef]
- Worthmann, B.M.; Song, H.C.; Dowling, D.R. Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean. J. Acoust. Soc. Am. 2017, 141, 543–556. [Google Scholar] [CrossRef]
- Geroski, D.J.; Dowling, D.R. Robust long-range source localization in the deep ocean using phase-only matched autoproduct processinga). J. Acoust. Soc. Am. 2021, 150, 171–182. [Google Scholar] [CrossRef]
- Park, M.; Choo, Y.; Choi, J.; Lee, K. Reformulation of frequency-difference matched-field processor for high-frequency known-source localization. J. Acoust. Soc. Am. 2023, 154, 948–967. [Google Scholar] [CrossRef]
- Liu, M.; Niu, H.; Li, Z. Implementation of Bartlett matched-field processing using interpretable complex convolutional neural network. JASA Express Lett. 2023, 3, 026003. [Google Scholar] [CrossRef]
- Byun, G.; Akins, F.; Gemba, K.; Song, H.; Kuperman, W. Multiple constraint matched field processing tolerant to array tilt mismatch. J. Acoust. Soc. Am. 2020, 147, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Frichter, G.; Byrne, C.; Feuillade, C. Sector-Focused Stability Methods for Robust Source Localization in Matched-Field Processing. J. Acoust. Soc. Am. 1990, 88, 10. [Google Scholar] [CrossRef]
- Abadi, S.H.; Song, H.C.; Dowling, D.R. Broadband sparse-array blind deconvolution using frequency-difference beamforming. J. Acoust. Soc. Am. 2012, 132, 3018–3029. [Google Scholar] [CrossRef] [PubMed]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H.; Tolstoy, A. Computational Ocean Acoustics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2011. [Google Scholar]
- Tantum, S.L.; Nolte, L.W. On array design for matched-field processing. J. Acoust. Soc. Am. 2000, 107, 2101–2111. [Google Scholar] [CrossRef]
(Hz) | (km) | |||
---|---|---|---|---|
780, 783 | 157 | 260 | 300 | 1.154 |
780, 786 | 77.6 | 130 | 150 | 1.154 |
780, 789 | 51.9 | 87 | 100 | 1.154 |
780, 792 | 39.3 | 65 | 75 | 1.154 |
780, 795 | 31.5 | 52 | 60 | 1.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Wang, H.; Su, B.; Wang, L.; Gao, W. Source Range Estimation Using Linear Frequency-Difference Matched Field Processing in a Shallow Water Waveguide. Remote Sens. 2024, 16, 3529. https://doi.org/10.3390/rs16183529
Song P, Wang H, Su B, Wang L, Gao W. Source Range Estimation Using Linear Frequency-Difference Matched Field Processing in a Shallow Water Waveguide. Remote Sensing. 2024; 16(18):3529. https://doi.org/10.3390/rs16183529
Chicago/Turabian StyleSong, Penghua, Haozhong Wang, Bolin Su, Liang Wang, and Wei Gao. 2024. "Source Range Estimation Using Linear Frequency-Difference Matched Field Processing in a Shallow Water Waveguide" Remote Sensing 16, no. 18: 3529. https://doi.org/10.3390/rs16183529
APA StyleSong, P., Wang, H., Su, B., Wang, L., & Gao, W. (2024). Source Range Estimation Using Linear Frequency-Difference Matched Field Processing in a Shallow Water Waveguide. Remote Sensing, 16(18), 3529. https://doi.org/10.3390/rs16183529