Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model
Abstract
:1. Introduction
- (1)
- The differential interferogram is segmented into several overlapping blocks along the azimuth direction, reducing the spatial coverage of each block and enabling more accurate estimation of the orbital error phases using the polynomial model.
- (2)
- Automatic segmentation is achieved by analyzing the trends in the differential phase. In this paper, we study the changing trends of the time-varying orbital error phase in both the azimuth and range directions, using the peaks and troughs of the azimuthal differential phase profile as block boundaries.
- (3)
- The orbital error phase for each block is estimated simultaneously using a block adjustment model. Specifically, control points and connection points are first selected to establish the block adjustment model. Then, the model coefficients for each block are determined using an iterative weighted least squares algorithm. Finally, the orbital error phase for the entire InSAR interferogram is obtained through mosaicking.
2. Methods
2.1. Polynomial-Based Orbit Error Model
2.2. Block Adjustment Model
2.2.1. Automatically Divide Interferogram into Blocks
2.2.2. Build Block Adjustment Model
2.2.3. Time-Varying Orbital Error Phase Estimation
3. Study Area and Data
3.1. Study Area
3.2. Datasets
3.2.1. Spaceborne and Airborne InSAR Data
3.2.2. LULC Maps
3.2.3. External DEM Data
3.2.4. LiDAR Verification Data
4. Results
4.1. Hunan Test Site
4.2. Krycklan Test Site
5. Discussion
5.1. Advantages of the Proposed Method
5.2. Limitations and Future Improvements
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic Aperture Radar Interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Gruber, A.; Wessel, B.; Huber, M.; Roth, A. Operational TanDEM-X DEM Calibration and First Validation Results. ISPRS-J. Photogramm. Remote Sens. 2012, 73, 39–49. [Google Scholar] [CrossRef]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Braeutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model. ISPRS-J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers. Geophys. Res. Lett. 2004, 31, 2004GL021737. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Ge, D.; Deng, Y.; Wang, R. Improved Offset Tracking for Predisaster Deformation Monitoring of the 2018 Jinsha River Landslide (Tibet, China). Remote Sens. Environ. 2020, 247, 111899. [Google Scholar] [CrossRef]
- Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Werner, M. Shuttle Radar Topography Mission (SRTM) Mission Overview. Frequenz 2001, 55, 75–79. [Google Scholar] [CrossRef]
- Choi, C.; Pardini, M.; Guliaev, R.; Papathanassiou, K.P. Fusion of Tandem-X and Gedi Data for Mapping Forest Height in the Brazilian Amazon. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5429–5431. [Google Scholar]
- Yang, Q.; Wang, J.; Wang, Y.; Lu, P.; Jia, H.; Wu, Z.; Li, L.; Zan, Y.; Wang, R. Image-Based Baseline Correction Method for Spaceborne InSAR with External DEM. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5202216. [Google Scholar] [CrossRef]
- Reigber, A.; Prats, P.; Mallorqui, J.J. Refined Estimation of Time-Varying Baseline Errors in Airborne SAR Interferometry. IEEE Geosci. Remote Sens. Lett. 2006, 3, 145–149. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, M.; Zhang, L.; Wang, G. Residual Motion Error Correction with Backprojection Multisquint Algorithm for Airborne Synthetic Aperture Radar Interferometry. Sensors 2019, 19, 2342. [Google Scholar] [CrossRef]
- Wang, H.; Fu, H.; Zhu, J.; Feng, G.; Yang, Z.; Wang, C.; Hu, J.; Yu, Y. Correction of Time-Varying Baseline Errors Based on Multibaseline Airborne Interferometric Data Without High-Precision DEMs. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9307–9318. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.; Lu, Z.; Jung, H.-S.; Hu, J.; Feng, G. A Novel Multitemporal InSAR Model for Joint Estimation of Deformation Rates and Orbital Errors. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3529–3540. [Google Scholar] [CrossRef]
- Liu, G.; Hanssen, R.F.; Guo, H.; Yue, H.; Perski, Z. Nonlinear Model for InSAR Baseline Error. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5341–5351. [Google Scholar] [CrossRef]
- Mancon, S.; Monti Guarnieri, A.; Giudici, D.; Tebaldini, S. On the Phase Calibration by Multisquint Analysis in TOPSAR and Stripmap Interferometry. IEEE Trans. Geosci. Remote Sens. 2017, 55, 134–147. [Google Scholar] [CrossRef]
- Du, Y.; Fu, H.; Liu, L.; Feng, G.; Peng, X.; Wen, D. Orbit Error Removal in InSAR/MTInSAR with a Patch-Based Polynomial Model. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102438. [Google Scholar] [CrossRef]
- Fu, H.Q.; Zhu, J.J.; Wang, C.C.; Wang, H.Q.; Zhao, R. A Wavelet Decomposition and Polynomial Fitting-Based Method for the Estimation of Time-Varying Residual Motion Error in Airborne Interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2018, 56, 49–59. [Google Scholar] [CrossRef]
- De Macedo, K.A.C.; Scheiber, R.; Moreira, A. An Autofocus Approach for Residual Motion Errors with Application to Airborne Repeat-Pass SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3151–3162. [Google Scholar] [CrossRef]
- Prats, P.; Mallorqui, J.J. Estimation of Azimuth Phase Undulations with Multisquint Processing in Airborne Interferometric Sar Images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1530–1533. [Google Scholar] [CrossRef]
- Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R.; Carter, W.E.; Glennie, C.; Lu, Z.; Yu, H. Estimation of Residual Motion Errors in Airborne SAR Interferometry Based on Time-Domain Backprojection and Multisquint Techniques. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2397–2407. [Google Scholar] [CrossRef]
- Zha, X.; Shao, Z.; Dai, Z.; Dong, Y. Accurate Frequency Estimation for Removal of Orbital Fringes in SAR Interferograms. Int. J. Remote Sens. 2020, 41, 5305–5320. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, K.; Fu, H.; Liu, J.; Wang, C.; Gui, R. Isolating Orbital Error from Multitemporal InSAR Derived Tectonic Deformation Based on Wavelet and Independent Component Analysis. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4510705. [Google Scholar] [CrossRef]
- Feng, G.; Ding, X.; Li, Z.; Mi, J.; Zhang, L.; Omura, M. Calibration of an InSAR-Derived Coseimic Deformation Map Associated With the 2011 Mw-9.0 Tohoku-Oki Earthquake. IEEE Geosci. Remote Sens. Lett. 2012, 9, 302–306. [Google Scholar] [CrossRef]
- Perna, S.; Esposito, C.; Berardino, P.; Pauciullo, A.; Wimmer, C.; Lanari, R. Phase Offset Calculation for Airborne InSAR DEM Generation Without Corner Reflectors. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2713–2726. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, H.; Li, X.; Yue, X.; Huang, Q. DEM Generation and Error Analysis Using the First Chinese Airborne Dual-Antenna Interferometric SAR Data. Int. J. Remote Sens. 2011, 32, 8485–8504. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Fu, H.; Feng, G.; Wang, C. Modeling and Robust Estimation for the Residual Motion Error in Airborne SAR Interferometry. IEEE Geosci. Remote Sens. Lett. 2019, 16, 65–69. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-Interferogram Method for Measuring Interseismic Deformation: Denali Fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef]
- Pepe, A.; Berardino, P.; Bonano, M.; Euillades, L.D.; Lanari, R.; Sansosti, E. SBAS-Based Satellite Orbit Correction for the Generation of DInSAR Time-Series: Application to RADARSAT-1 Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5150–5165. [Google Scholar] [CrossRef]
- Bähr, H.; Hanssen, R.F. Reliable Estimation of Orbit Errors in Spaceborne SAR Interferometry: The Network Approach. J. Geod. 2012, 86, 1147–1164. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, Q.; Zhang, Y.; Yang, Y.; Yong, Q.; Liu, G.; Liu, X. Sequential Combination of Multi-Source Satellite Observations for Separation of Surface Deformation Associated with Serial Seismic Events. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 57–70. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Li, T.; Gao, Y.; Chen, Q.; Zhang, X. Modeling the Optimal Baseline for a Spaceborne Bistatic SAR System to Generate DEMs. Int. J. Geo-Inform. 2020, 9, 108. [Google Scholar] [CrossRef]
- De Zan, F.; Parizzi, A.; Gonzalez, F.R.; Ansari, H.; Gomba, G.; Brcic, R.; Eineder, M. Insar Error Budget for Large Scale Deformation. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2042–2045. [Google Scholar]
- Du, Y.; Feng, G.; Peng, X.; Li, Z. Subsidence Evolution of the Leizhou Peninsula, China, Based on InSAR Observation from 1992 to 2010. Appl. Sci. 2017, 7, 466. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Fu, H.; Zhu, J.; Yu, Y.; Li, R.; Zhang, S.; Qu, Z.; Hu, S. Parameterized Modeling and Calibration for Orbital Error in TanDEM-X Bistatic SAR Interferometry over Complex Terrain Areas. Remote Sens. 2021, 13, 5124. [Google Scholar] [CrossRef]
- Discrete-Time Signal Processing|Electrical Engineering and Computer Science. Available online: https://ocw.mit.edu/courses/6-341-discrete-time-signal-processing-fall-2005/ (accessed on 20 September 2024).
- Numerical Mathematics|SpringerLink. Available online: https://link.springer.com/book/10.1007/b98885 (accessed on 20 September 2024).
- Li, T.; Tang, X.; Zhou, X.; Zhang, X. LuTan-1 SAR Main Applications and Products. In Proceedings of the EUSAR 2022; 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; pp. 1–4. [Google Scholar]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Hawker, L.; Uhe, P.; Paulo, L.; Sosa, J.; Savage, J.; Sampson, C.; Neal, J. A 30 m Global Map of Elevation with Forests and Buildings Removed. Environ. Res. Lett. 2022, 17, 024016. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase Unwrapping in InSAR: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Fu, H.; Zhu, J.; Wang, C.; Wang, H.; Zhao, R. Underlying Topography Estimation over Forest Areas Using High-Resolution P-Band Single-Baseline PolInSAR Data. Remote Sens. 2017, 9, 363. [Google Scholar] [CrossRef]
Test Sets | SAR Data | Date | Temporal Baseline | Kz | Azimuth × Range (m) | Band |
---|---|---|---|---|---|---|
(rad/m) | ||||||
Hunan | 1 (master) | 16 April 2023 | 4 day | 0.016~0.032 | 4.78 × 1.66 | L |
2 | 20 April 2023 | |||||
krycklan | 0103 (master) | 14 October 2008 | 34~71 min | 0.007~0.080 | 0.70 × 1.50 | P |
0101 | 14 October 2008 | |||||
0105 | 14 October 2008 | 0.005~0.073 | 0.70 × 1.50 | P | ||
0107 | 14 October 2008 | 0.020~0.135 | 0.70 × 1.50 | P | ||
0109 | 14 October 2008 | 0.040~0.180 | 0.70 × 1.50 | P | ||
0111 | 14 October 2008 | 0.050~0.250 | 0.70 × 1.50 | P |
Accuracy (m) | 0101 | 0105 | 0107 | 0109 | 0111 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | STD | MAE | RMSE | STD | MAE | RMSE | STD | MAE | RMSE | STD | MAE | RMSE | STD | MAE | |
Before correction | 14.79 | 14.45 | 3.12 | 12.10 | 11.28 | 9.56 | 9.22 | 9.15 | 1.13 | 7.83 | 7.81 | 0.58 | 11.94 | 11.68 | 2.46 |
Case 1 | 11.75 | 11.72 | 0.91 | 9.78 | 9.74 | 0.83 | 7.08 | 7.07 | 0.21 | 5.83 | 5.64 | 1.15 | 6.03 | 5.81 | 1.26 |
Case 2 | 9.75 | 9.70 | 0.94 | 6.91 | 6.82 | 1.17 | 5.07 | 4.96 | 1.15 | 4.55 | 4.41 | 1.02 | 4.75 | 4.58 | 1.29 |
Case 3 | 6.62 | 6.32 | 1.95 | 5.39 | 5.06 | 1.86 | 3.84 | 3.20 | 2.12 | 3.37 | 2.68 | 2.05 | 3.26 | 2.59 | 1.98 |
Proposed method | 6.02 | 5.82 | 1.52 | 4.82 | 4.33 | 2.12 | 3.95 | 3.43 | 1.96 | 3.57 | 2.95 | 2.02 | 3.36 | 2.62 | 2.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Fu, H.; Zhu, J.; Liu, Z.; Wu, K.; Zeng, D.; Wan, A.; Wang, F. Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model. Remote Sens. 2024, 16, 3578. https://doi.org/10.3390/rs16193578
Hu H, Fu H, Zhu J, Liu Z, Wu K, Zeng D, Wan A, Wang F. Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model. Remote Sensing. 2024; 16(19):3578. https://doi.org/10.3390/rs16193578
Chicago/Turabian StyleHu, Huacan, Haiqiang Fu, Jianjun Zhu, Zhiwei Liu, Kefu Wu, Dong Zeng, Afang Wan, and Feng Wang. 2024. "Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model" Remote Sensing 16, no. 19: 3578. https://doi.org/10.3390/rs16193578
APA StyleHu, H., Fu, H., Zhu, J., Liu, Z., Wu, K., Zeng, D., Wan, A., & Wang, F. (2024). Automatic Correction of Time-Varying Orbit Errors for Single-Baseline Single-Polarization InSAR Data Based on Block Adjustment Model. Remote Sensing, 16(19), 3578. https://doi.org/10.3390/rs16193578