The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. TECIS Retrieval Algorithm
2.2. Other Data
2.2.1. CALIPSO
2.2.2. AERONET
2.2.3. MODIS
2.2.4. Air Pollution Data
2.2.5. ERA5 Data
2.3. Backward Trajectories
3. Validation Results
3.1. Validation with CALIPSO
3.2. AOD Validation
4. Application of TECIS Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Boucher, O. Atmospheric Aerosols; Springer: Dordrecht, The Netherlands, 2015; pp. 9–24. [Google Scholar]
- Hansen, J.; Sato, M. Regional climate change and national responsibilities. Environ. Res. Lett. 2016, 11, 034009. [Google Scholar] [CrossRef]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate effects of black carbon aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.; Hales, J.; Cess, R.D.; Coakley, J., Jr.; Hansen, J.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef]
- Gryspeerdt, E.; Quaas, J.; Ferrachat, S.; Gettelman, A.; Ghan, S.; Lohmann, U.; Morrison, H.; Neubauer, D.; Partridge, D.G.; Stier, P.; et al. Constraining the instantaneous aerosol influence on cloud albedo. Proc. Natl. Acad. Sci. USA 2017, 114, 4899–4904. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Twomey, S.J.A.E. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Shaik, D.S.; Kant, Y.; Mitra, D.; Babu, S.S. Assessment of aerosol characteristics and radiative forcing over northwest Himalayan region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5314–5321. [Google Scholar] [CrossRef]
- Welton, E.J.; Campbell, J.R.; Spinhirne, J.D.; Scott III, V.S. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. In Lidar Remote Sensing for Industry and Environment Monitoring; SPIE: Bellingham, WA, USA, 2001; pp. 151–158. [Google Scholar]
- Kokhanovsky, A.; Breon, F.-M.; Cacciari, A.; Carboni, E.; Diner, D.; Di Nicolantonio, W.; Grainger, R.; Grey, W.; Höller, R.; Lee, K.-H.; et al. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos. Res. 2007, 85, 372–394. [Google Scholar] [CrossRef]
- Reddy, K.R.O.; Zhang, X.; Bi, L. Seasonal aerosol variations over a coastal city, Zhoushan, China from CALIPSO observations. Atmos. Res. 2019, 218, 117–128. [Google Scholar] [CrossRef]
- Solanki, R.; Singh, N. LiDAR observations of the vertical distribution of aerosols in free troposphere: Comparison with CALIPSO level-2 data over the central Himalayas. Atmos. Environ. 2014, 99, 227–238. [Google Scholar] [CrossRef]
- Winker, D.; Tackett, J.; Getzewich, B.; Liu, Z.; Vaughan, M.; Rogers, R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- Ananthavel, A.; Mehta, S.K.; Ali, S.; Reddy, T.R.; Annamalai, V.; Rao, D.N. Micro Pulse Lidar measurements in coincidence with CALIPSO overpasses: Comparison of tropospheric aerosols over Kattankulathur (12.82°N, 80.04°E). Atmos. Pollut. Res. 2021, 12, 101082. [Google Scholar] [CrossRef]
- Papagiannopoulos, N.; Mona, L.; Alados-Arboledas, L.; Amiridis, V.; Baars, H.; Binietoglou, I.; Bortoli, D.; D’Amico, G.; Giunta, A.; Guerrero-Rascado, J.L.; et al. CALIPSO climatological products: Evaluation and suggestions from EARLINET. Atmos. Chem. Phys. 2016, 16, 2341–2357. [Google Scholar] [CrossRef]
- Kacenelenbogen, M.; Vaughan, M.; Redemann, J.; Hoff, R.; Rogers, R.; Ferrare, R.; Russell, P.; Hostetler, C.; Hair, J.; Holben, B. An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study. Atmos. Chem. Phys. 2011, 11, 3981–4000. [Google Scholar] [CrossRef]
- Xu, X.; Wu, H.; Yang, X.; Xie, L. Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmos. Environ. 2020, 237, 117670. [Google Scholar] [CrossRef]
- Zhang, Z.; Kuang, Z.; Yu, C.; Wu, D.; Shi, Q.; Zhang, S.; Wang, Z.; Liu, D. Trans-Boundary Dust Transport of Dust Storms in Northern China: A Study Utilizing Ground-Based Lidar Network and CALIPSO Satellite. Remote Sens. 2024, 16, 1196. [Google Scholar] [CrossRef]
- Lu, C.; Xu, X.; Mhawish, A. Long-term three-dimensional distribution and transport of Saharan dust: Observation from CALIPSO, MODIS, and reanalysis data. Atmos. Res. 2023, 286, 106658. [Google Scholar]
- Zha, C.; Bu, L.; Li, Z.; Wang, Q.; Mubarak, A.; Liyanage, P.; Liu, J.; Chen, W. Aerosol Optical Properties Measurement using the Orbiting High Spectral Resolution Lidar onboard DQ-1 Satellite: Retrieval and Validation. Atmos. Meas. Tech. Discuss. 2023, 2023, 1–31. [Google Scholar]
- Liu, Q.; Huang, Z.; Liu, J.; Chen, W.; Dong, Q.; Wu, S.; Dai, G.; Li, M.; Li, W.; Li, Z.; et al. Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network. Atmos. Meas. Tech. 2024, 17, 1403–1417. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; He, T. Overall Design of Terrestrial Ecosystem Carbon Inventory Satellite. Spacecr. Recovery Remote Sens. 2022, 43, 16–26. [Google Scholar]
- Tang, T.; Yang, J.; Fu, R. Optical Design Used in Multi-beam LiDAR for Monitoring of TECIS. Spacecr. Recovery Remote Sens. 2022, 43, 36–49. [Google Scholar]
- Zhang, X.; Wu, Y. Design of Laser Transmitter for Terrestrial Ecosystem Carbon Inventory Satellite’s Multi-beam LiDAR. Spacecr. Recovery Remote Sens. 2022, 43, 59–67. [Google Scholar]
- Cao, H.; Zhang, X.; Huang, J.; He, T.; Mao, Y.; Lu, Q. System design and key technologies of Terrestrial Ecosystem Carbon Inventory Satellite. Chin. Space Sci. Technol. 2023, 43, 112–124. [Google Scholar]
- Tenti, G.; Boley, C.; Desai, R.C. On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases. Can. J. Phys. 1974, 52, 285–290. [Google Scholar] [CrossRef]
- Hou-Tong, L.; Liang-Fu, C.; Lin, S. Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar. Acta Phys. Sin. 2011, 60, 064204. (In Chinese) [Google Scholar] [CrossRef]
- Mao, F.; Liu, J.; Wang, L.; Chen, S.; Li, C. Denoising and retrieval algorithm based on a dual ensemble Kalman filter for elastic lidar data. Opt. Commun. 2019, 433, 137–143. [Google Scholar] [CrossRef]
- Rowell, R.L.; Aval, G.M.; Barrett, J.J. Rayleigh–Raman Depolarization of Laser Light Scattered by Gases. J. Chem. Phys. 1971, 54, 1960–1964. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Hunt, W.H.; Winker, D.M.; Vaughan, M.A.; Powell, K.A.; Lucker, P.L.; Weimer, C. CALIPSO lidar description and performance assessment. J. Atmos. Ocean. Technol. 2009, 26, 1214–1228. [Google Scholar] [CrossRef]
- Winker, D.; Pelon, J.; Coakley, J., Jr.; Ackerman, S.; Charlson, R.; Colarco, P.; Flamant, P.; Fu, Q.; Hoff, R.; Kittaka, C.; et al. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Bréon, F.-M.; Vermeulen, A.; Descloitres, J. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sens. Environ. 2011, 115, 3102–3111. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Schafer, J.S.; Giles, D.M.; Sorokin, M. Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and Aqua MODIS products available from NASA GES DAAC. Adv. Space Res. 2004, 34, 710–714. [Google Scholar] [CrossRef]
- Wang, S.; Fang, L.; Gu, X.; Yu, T.; Gao, J. Comparison of aerosol optical properties from Beijing and Kanpur. Atmos. Environ. 2011, 45, 7406–7414. [Google Scholar] [CrossRef]
- Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Patadia, F.; Hsu, N. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Remer, L.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.; Li, R.; Ichoku, C.; Levy, R.; Kleidman, R.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef]
- Rao, J.; Xie, J.; Cao, Y.; Zhu, S.; Lu, Q. Record flood-producing rainstorms of July 2021 and August 1975 in Henan of China: Comparative synoptic analysis using ERA5. J. Meteorol. Res. 2022, 36, 809–823. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Groß, S.; Tesche, M.; Freudenthaler, V.; Toledano, C.; Wiegner, M.; Ansmann, A.; Althausen, D.; Seefeldner, M. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B Chem. Phys. Meteorol. 2011, 63, 706–724. [Google Scholar] [CrossRef]
- Ke, J.; Sun, Y.; Dong, C.; Zhang, X.; Wang, Z.; Lyu, L.; Zhu, W.; Ansmann, A.; Su, L.; Bu, L.; et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: Retrieval algorithm and airborne demonstration. PhotoniX 2022, 3, 17. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, S.W.; Yoon, S.C.; Omar, A.H. Comparison of aerosol optical depth between CALIOP and MODIS-Aqua for CALIOP aerosol subtypes over the ocean. J. Geophys. Res. Atmos. 2013, 118, 13–241. [Google Scholar] [CrossRef]
- Kittaka, C.; Winker, D.; Vaughan, M.; Omar, A.; Remer, L. Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmos. Meas. Tech. 2011, 4, 131–141. [Google Scholar] [CrossRef]
- Demura, Y.; Hoshino, B.; Sofue, Y.; Kai, K.; Purevsuren, T.; Baba, K.; Noda, J. Estimates of ground surface characteristics for outbreaks of the Asian Dust Storms in the sources region. ProScience 2016, 3, 21–30. [Google Scholar]
- Xuan, J.; Sokolik, I.N.; Hao, J.; Guo, F.; Mao, H.; Yang, G. Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmos. Environ. 2004, 38, 6239–6252. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J. A climatology of Northeast Asian dust events. Meteorol. Z. 2003, 12, 187–196. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113, 23212. [Google Scholar] [CrossRef]
- Jugder, D.; Shinoda, M.; Kimura, R.; Batbold, A.; Amarjargal, D. Quantitative analysis on windblown dust concentrations of PM10 (PM2. 5) during dust events in Mongolia. Aeolian Res. 2014, 14, 3–13. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Z.; Liu, J.; Yin, J.F.; Wu, R.J. Spatiotemporal distribution and transport characteristics of dust aerosols during a dust event in northern China. J. Desert Res. 2012, 33, 1440–1452. [Google Scholar]
- Liu, D.; Wang, Z.; Liu, Z.; Winker, D.; Trepte, C.J. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
System Parameter | Indicator |
---|---|
Beams | 1 |
Pulse repetition | 20 Hz |
Wavelength | 1064 nm, 532 nm |
Polarization detection | Parallel and perpendicular @532 nm |
Divergence angle | ≤200 μrad (100 m) |
Sampling rate | 10 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Chen, B.; Bu, L.; Hu, G.; Fang, J.; Liyanage, P. The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application. Remote Sens. 2024, 16, 3689. https://doi.org/10.3390/rs16193689
Ren Y, Chen B, Bu L, Hu G, Fang J, Liyanage P. The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application. Remote Sensing. 2024; 16(19):3689. https://doi.org/10.3390/rs16193689
Chicago/Turabian StyleRen, Yijie, Binglong Chen, Lingbing Bu, Gen Hu, Jingyi Fang, and Pasindu Liyanage. 2024. "The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application" Remote Sensing 16, no. 19: 3689. https://doi.org/10.3390/rs16193689
APA StyleRen, Y., Chen, B., Bu, L., Hu, G., Fang, J., & Liyanage, P. (2024). The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application. Remote Sensing, 16(19), 3689. https://doi.org/10.3390/rs16193689