Enhanced Impacts of Extreme Weather Events on Forest: The Upper Valtellina (Italy) Case Study
Abstract
:1. Introduction
2. Study Area
3. Data
4. Methods
4.1. Forest Area and Timber Stock Pre- and Post-Vaia
4.2. Timber Production
4.3. Carbon Sequestration
5. Results
5.1. Impact of Vaia Storm on Forest Area and Timber Stock
5.2. Impact of the Vaia Storm on Timber Production
5.3. Impact of the Vaia Storm on Carbon Sequestration
6. Discussion
6.1. Areas Involved by Vaia Storm
6.2. Timber Production
6.3. Carbon Sequestration
6.4. Enhanced Impacts
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subramanian, N.; Nilsson, U.; Mossberg, M.; Bergh, J. Impacts of Climate Change, Weather Extremes and Alternative Strategies in Managed Forests. Écoscience 2019, 26, 53–70. [Google Scholar] [CrossRef]
- Lima, N.; Cunha-Lignon, M.; Martins, A.; Armani, G.; Galvani, E. Impacts of Extreme Weather Event in Southeast Brazilian Mangrove Forest. Atmosphere 2023, 14, 1195. [Google Scholar] [CrossRef]
- Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.M.; Nilsson, C. Assessment of the Impacts of Climate Change and Weather Extremes on Boreal Forests in Northern Europe, Focusing on Norway Spruce. Clim. Res. 2006, 31, 75–84. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [Google Scholar]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Change 2007, 81, 71–95. [Google Scholar] [CrossRef]
- IPCC. Third Assessment Report, Climate Change 2001: The Scientific Basis; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Leckebusch, G.C.; Weimer, A.; Pinto, J.G.; Reyers, M.; Speth, P. Extreme Wind Storms over Europe in Present and Future Climate: A Cluster Analysis Approach. Meteorol. Z. 2008, 17, 67–82. [Google Scholar] [CrossRef]
- Rapella, L.; Faranda, D.; Gaetani, M.; Drobinski, P.; Ginesta, M. Climate Change on Extreme Winds Already Affects Off-Shore Wind Power Availability in Europe. Environ. Res. Lett. 2023, 18, 034040. [Google Scholar] [CrossRef]
- Blennow, K.; Olofsson, E. The Probability of Wind Damage in Forestry under a Changed Wind Climate. Clim. Change 2008, 87, 347–360. [Google Scholar] [CrossRef]
- Quine, C.P. Assessing the Risk of Wind Damage to Forests: Practice and Pitfalls. In Wind and Trees; Cambridge University Press: Cambridge, UK, 1995; pp. 379–403. [Google Scholar]
- Chirici, G.; Giannetti, F.; Travaglini, D.; Nocentini, S.; Francini, S.; D’Amico, G.; Calvo, E.; Fasolini, D.; Broll, M.; Maistrelli, F.; et al. Forest Damage Inventory after the “Vaia” Storm in Italy. For.@-Riv. Di Selvic. Ed Ecol. For. 2019, 16, 3–9. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite Open Data to Monitor Forest Damage Caused by Extreme Climate-Induced Events: A Case Study of the Vaia Storm in Northern Italy. For. Int. J. For. Res. 2021, 94, 407–416. [Google Scholar] [CrossRef]
- Giupponi, L.; Leoni, V.; Pedrali, D.; Giorgi, A. Restoration of Vegetation Greenness and Possible Changes in Mature Forest Communities in Two Forests Damaged by the Vaia Storm in Northern Italy. Plants 2023, 12, 1369. [Google Scholar] [CrossRef] [PubMed]
- Senese, A.; Pelfini, M.; Maragno, D.; Bollati, I.M.; Fugazza, D.; Vaghi, L.; Federici, M.; Grimaldi, L.; Belotti, P.; Lauri, P.; et al. The Role of E-Bike in Discovering Geodiversity and Geoheritage. Sustainability 2023, 15, 4979. [Google Scholar] [CrossRef]
- Udali, A.; Andrighetto, N.; Grigolato, S.; Gatto, P. Economic Impacts of Forest Storms—Taking Stock of After-Vaia Situation of Local Roundwood Markets in Northeastern Italy. Forests 2021, 12, 414. [Google Scholar] [CrossRef]
- Parco Nazionale dello Stelvio Il Parco in Lombardia. Available online: https://lombardia.stelviopark.it/il-parco-in-lombardia/ (accessed on 29 September 2024).
- Fugazza, D.; Senese, A.; Azzoni, R.S.; Maugeri, M.; Maragno, D.; Diolaiuti, G.A. New Evidence of Glacier Darkening in the Ortles-Cevedale Group from Landsat Observations. Glob. Planet. Change 2019, 178, 35–45. [Google Scholar] [CrossRef]
- Azzoni, R.S.; Fugazza, D.; Zerboni, A.; Senese, A.; D’Agata, C.; Maragno, D.; Carzaniga, A.; Cernuschi, M.; Diolaiuti, G.A. Evaluating High-Resolution Remote Sensing Data for Reconstructing the Recent Evolution of Supra Glacial Debris. Prog. Phys. Geogr. Earth Environ. 2018, 42, 3–23. [Google Scholar] [CrossRef]
- Senese, A.; Diolaiuti, G.; Verza, G.P.; Smiraglia, C. Surface Energy Budget and Melt Amount for the Years 2009 and 2010 at the Forni Glacier (Italian Alps, Lombardy). Geogr. Fis. E Din. Quat. 2012, 35, 69–77. [Google Scholar] [CrossRef]
- Senese, A.; Maugeri, M.; Meraldi, E.; Verza, G.P.; Azzoni, R.S.; Compostella, C.; Diolaiuti, G. Estimating the Snow Water Equivalent on a Glacierized High Elevation Site (Forni Glacier, Italy). Cryosphere 2018, 12, 1293–1306. [Google Scholar] [CrossRef]
- Urbini, S.; Zirizzotti, A.; Baskaradas, J.; Tabacco, I.; Cafarella, L.; Senese, A.; Smiraglia, C.; Diolaiuti, G. Airborne Radio Echo Sounding (RES) Measures on Alpine Glaciers to Evaluate Ice Thickness and Bedrock Geometry: Preliminary Results from Pilot Tests Performed in the Ortles Cevedale Group (Italian Alps). Ann. Geophys. 2017, 60, G0226. [Google Scholar] [CrossRef]
- Geoportale Della Lombardia—Carta Forestale. Available online: https://www.geoportale.regione.lombardia.it/download-pacchetti?p_p_id=dwnpackageportlet_WAR_gptdownloadportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_dwnpackageportlet_WAR_gptdownloadportlet_metadataid=r_lombar%3A7ceabf1c-28b2-4c0b-b4ba-4be3d17afa33&_jsfBridgeRedirect=true (accessed on 2 August 2024).
- Geoportale Della Lombardia—Boschi Danneggiati Dalla Tempesta Vaia Del 2018. Available online: https://www.geoportale.regione.lombardia.it/metadati?p_p_id=detailSheetMetadata_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_detailSheetMetadata_WAR_gptmetadataportlet_identifier=r_lombar%3A39747008-6b29-48db-8875-f9a953a3f46c&_jsfBridgeRedirect=true# (accessed on 2 August 2024).
- Daily, G.C. Introduction: What Are Ecosystem Services? In Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; pp. 1–10. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems & Human Well-Being: Opportunities & Challenges for Business & Industry; UNEP: Nairobi, Kenya, 2005. [Google Scholar]
- Haines-Young, R.; Potschin-Young, M. Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
- Grilli, G.; Nikodinoska, N.; Paletto, A.; De Meo, I. Stakeholders’ Preferences and Economic Value of Forest Ecosystem Services: An Example in the Italian Alps. Balt For. 2015, 21, 298–307. [Google Scholar]
- Bateman, I.J.; Lovett, A.A.; Brainard, J.S. Developing a Methodology for Benefit Transfers Using Geographical Information Systems: Modelling Demand for Woodland Recreation. Reg. Stud. 1999, 33, 191–205. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrol Process 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Herzog, H.; Golomb, D. Carbon Capture and Storage from Fossil Fuel Use. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; pp. 277–287. [Google Scholar]
- Lal, R.; Lorenz, K.; Hüttl, R.F.; Schneider, B.U.; von Braun, J. Ecosystem Services and Carbon Sequestration in the Biosphere; Springer: Berlin/Heidelberg, Germany, 2013; 464p. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B.; Scott, N.A.; Goulding, C.; Beets, P. Designing Systems to Monitor Carbon Stocks in Forests and Shrublands. Ecol. Manag. 2002, 164, 89–108. [Google Scholar] [CrossRef]
- Sollins, P.; Cline, S.P.; Verhoeven, T.; Sachs, D.; Spycher, G. Patterns of Log Decay in Old-Growth Douglas-Fir Forests. Can. J. For. Res. 1987, 17, 1585–1595. [Google Scholar] [CrossRef]
- Peters-Stanley, M.; Yin, D.; Castillo, S.; Gonzalez, G.; Goldestein, A. Maneuvering the Mosaic of the Voluntary Carbon Markets 2013. Available online: https://www.forest-trends.org/wp-content/uploads/2013/07/doc_3846.pdf (accessed on 29 September 2024).
- Bayer, P.; Aklin, M. The European Union Emissions Trading System Reduced CO2 Emissions despite Low Prices. Proc. Natl. Acad. Sci. USA 2020, 117, 8804–8812. [Google Scholar] [CrossRef]
- Federici, S.; Vitullo, M.; Tulipano, S.; De Lauretis, R.; Seufert, G. An Approach to Estimate Carbon Stocks Change in Forest Carbon Pools under the UNFCCC: The Italian Case. IForest 2008, 1, 86–95. [Google Scholar] [CrossRef]
- Consorzio Forestale Alta Valtellina Piano Di Indirizzo Forestale—Schede Dei Modelli Colturali. Available online: https://www.provinciasondrio.it/sites/default/files/contents/progetti-pianificazione/2976/04_schede_modelli_colturali_marzo18_agg_luglio18.pdf (accessed on 29 September 2024).
- Anthelme, F.; Michalet, R.; Barbaro, L.; Brun, J.J. Environmental and Spatial Influences of Shrub Cover (Alnus Viridis DC.) on Vegetation Diversity at the Upper Treeline in the Inner Western Alps. Arct. Antarct. Alp. Res. 2003, 35, 48–55. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A Model of Carbon-Dynamics in Forestry and Land-Use Change Implementing IPCC Standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Smyth, C.E.; Blujdea, V. Application of the CBM-CFS3 Model to Estimate Italy’s Forest Carbon Budget, 1995–2020. Ecol. Model. 2013, 266, 144–171. [Google Scholar] [CrossRef]
- Giannetti, F.; Pecchi, M.; Travaglini, D.; Francini, S.; D’Amico, G.; Vangi, E.; Cocozza, C.; Chirici, G. Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests 2021, 12, 680. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Characterizing the State and Processes of Change in a Dynamic Forest Environment Using Hierarchical Spatio-Temporal Segmentation. Remote Sens. Environ. 2011, 115, 1665–1679. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A. Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning. Remote Sens. 2020, 12, 1145. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Puletti, N.; Bascietto, M. Towards a Tool for Early Detection and Estimation of Forest Cuttings by Remotely Sensed Data. Land 2019, 8, 58. [Google Scholar] [CrossRef]
- ERSAF—Regione Lombardia Tempesta Vaia. Available online: https://www.ersaf.lombardia.it/tempesta-vaia/ (accessed on 2 September 2024).
- Schwarzbauer, P.; Rauch, P. Impact on Industry and Markets—Roundwood Prices and Procurement Risks. In Living with Storm Damage to Forests: What Science Can Tell Us; European Forest Institute: Joensuu, Finland, 2013; pp. 61–77. [Google Scholar]
- Thom, D.; Seidl, R. Natural Disturbance Impacts on Ecosystem Services and Biodiversity in Temperate and Boreal Forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Fiorese, G.; Cescatti, A. The European Forest Sector: Past and Future Carbon Budget and Fluxes under Different Management Scenarios. Biogeosciences 2017, 14, 2387–2405. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Leckebusch, G.; Koffi, B.; Ulbrich, U.; Pinto, J.; Spangehl, T.; Zacharias, S. Analysis of Frequency and Intensity of European Winter Storm Events from a Multi-Model Perspective, at Synoptic and Regional Scales. Clim. Res. 2006, 31, 59–74. [Google Scholar] [CrossRef]
- Pilli, R.; Vizzarri, M.; Chirici, G. Combined Effects of Natural Disturbances and Management on Forest Carbon Sequestration: The Case of Vaia Storm in Italy. Ann. For. Sci. 2021, 78, 46. [Google Scholar] [CrossRef]
- Gardiner, B.; Blennow, K.; Carnus, J.M.; Fleischer, P.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.; Orazio, C.; et al. Destructive Storms in European Forests: Past and Forthcoming Impacts. Final Report to European Commission—DG Environment. Available online: https://www.researchgate.net/publication/48202282_Destructive_storms_in_European_Forests_Past_and_Forthcoming_Impacts_Final_report_to_European_Commission_-_DG_Environment (accessed on 2 August 2024).
- Oddi, L.; Migliavacca, M.; Cremonese, E.; Filippa, G.; Vacchiano, G.; Siniscalco, C.; Morra di Cella, U.; Galvagno, M. Contrasting Responses of Forest Growth and Carbon Sequestration to Heat and Drought in the Alps. Environ. Res. Lett. 2022, 17, 045015. [Google Scholar] [CrossRef]
- Dobor, L.; Hlásny, T.; Rammer, W.; Zimová, S.; Barka, I.; Seidl, R. Is Salvage Logging Effectively Dampening Bark Beetle Outbreaks and Preserving Forest Carbon Stocks? J. Appl. Ecol. 2020, 57, 67–76. [Google Scholar] [CrossRef]
- Jonsson, R.; Blujdea, V.; Fiorese, G.; Pilli, R.; Rinaldi, F.; Baranzelli, C.; Camia, A. Outlook of the European Forest-Based Sector: Forest Growth, Harvest Demand, Wood-Product Markets, and Forest Carbon Dynamics Implications. IForest 2018, 11, 315–328. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Andreetta, A.; Aubert, M.; Bernier, N.; Bonifacio, E.; Bonneval, K.; Bolzonella, C.; Chertov, O.; Costantini, E.A.C.; et al. Combined Forest and Soil Management after a Catastrophic Event. J. Mt. Sci. 2020, 17, 2459–2484. [Google Scholar] [CrossRef] [PubMed]
- Pieratti, E.; Bernardi, S.; Romagnoli, M.; Sartori, O.; Paletto, A. Demand and Supply of Wood Biomass for Energy Use in the Province of Trento (Italy): A Survey. For.@-Riv. Di Selvic. Ed Ecol. For. 2019, 16, 16–25. [Google Scholar] [CrossRef]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Boncčìna, A.; Chauvin, C.; Drossler, L.; Garcia-Guemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of Close-to-Nature Silviculture for Adapting Temperate European Forests to Climate Change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Soimakallio, S.; Kalliokoski, T.; Lehtonen, A.; Salminen, O. On the Trade-Offs and Synergies between Forest Carbon Sequestration and Substitution. Mitig. Adapt. Strateg. Glob. Change 2021, 26, 4. [Google Scholar] [CrossRef]
- Štraus, H.; Podvinšek, S.; Klopčič, M. Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps. Forests 2023, 14, 947. [Google Scholar] [CrossRef]
- Golub, A.; Sohngen, B.; Cai, Y.; Kim, J.; Hertel, T. Costs of Forest Carbon Sequestration in the Presence of Climate Change Impacts. Environ. Res. Lett. 2022, 17, 104011. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Busch, J.; Engelmann, J.; Cook-Patton, S.C.; Griscom, B.W.; Kroeger, T.; Possingham, H.; Shyamsundar, P. Potential for Low-Cost Carbon Dioxide Removal through Tropical Reforestation. Nat. Clim. Chang. 2019, 9, 463–466. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Göthlin, E.; Schroeder, L.M.; Lindelöw, A. Attacks by Ips typographus and Pityogenes chalcographus on Windthrown Spruces (Picea Abies) During the Two Years Following a Storm Felling. Scand. J. For. Res. 2000, 15, 542–549. [Google Scholar] [CrossRef]
- Christiansen, E.; Bakke, A. The Spruce Bark Beetle of Eurasia. In Dynamics of Forest Insect Populations; Springer: Boston, MA, USA, 1988; pp. 479–503. [Google Scholar]
- Deganutti, L.; Biscontin, F.; Bernardinelli, I.; Faccoli, M. The Semiochemical Push-and-pull Technique Can Reduce Bark Beetle Damage in Disturbed Norway Spruce Forests Affected by the Vaia Storm. Agric. For. Entomol. 2024, 26, 115–125. [Google Scholar] [CrossRef]
- Netherer, S.; Hammerbacher, A. The Eurasian Sprucebark Beetle in a Warming Climate: Phenology, Behavior and Biotic Interactions. In Bark Beetle Management, Ecology and Climate Change; Academic Press, Elsevier Publishing: London, UK, 2022; p. 408. [Google Scholar]
- Furuta, K. A Comparison of Endemic and Epidemic Populations of the Spruce Beetle (Ips typographus japonicus Niijima) in Hokkaido. J. Appl. Entomol. 1989, 107, 289–295. [Google Scholar] [CrossRef]
- Schroeder, L.M.; Lindelöw, Å. Attacks on Living Spruce Trees by the Bark Beetle Ips typographus (Col. Scolytidae) Following a Storm-felling: A Comparison between Stands with and without Removal of Wind-felled Trees. Agric. For. Entomol. 2002, 4, 47–56. [Google Scholar] [CrossRef]
- Modlinger, R.; Novotný, P. Quantification of Time Delay between Damages Caused by Windstorms and by Ips typographus. For. J. 2015, 61, 221–231. [Google Scholar] [CrossRef]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.-J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Holmes, T.P. Price and Welfare Effects of Catastrophic Forest Damage From Southern Pine Beetle Epidemics. For. Sci. 1991, 37, 500–516. [Google Scholar] [CrossRef]
- Pye, J.M.; Holmes, T.P.; Prestemon, J.P.; Wear, D.N. Economic Impacts of the Southern Pine Beetle. In Southern Pine Beetle II; Gen. Tech. Rep. SRS-140; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2011; pp. 213–222. [Google Scholar]
- Cohen, J.; Blinn, C.E.; Boyle, K.J.; Holmes, T.P.; Moeltner, K. Hedonic Valuation with Translating Amenities: Mountain Pine Beetles and Host Trees in the Colorado Front Range. Environ. Resour. Econ. 2016, 63, 613–642. [Google Scholar] [CrossRef]
- Rosenberger, R.S.; Bell, L.A.; Champ, P.A.; White, E.M. Estimating the Economic Value of Recreation Losses in Rocky Mountain National Park Due to a Mountain Pine Beetle Outbreak. West. Econ. Forum 2013, 12, 31–39. [Google Scholar]
- Peters, E.B.; Wythers, K.R.; Bradford, J.B.; Reich, P.B. Influence of Disturbance on Temperate Forest Productivity. Ecosystems 2013, 16, 95–110. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Lexer, M.J. Impact of Bark Beetle (Ips typographus L.) Disturbance on Timber Production and Carbon Sequestration in Different Management Strategies under Climate Change. For. Ecol. Manag. 2008, 256, 209–220. [Google Scholar] [CrossRef]
- Zeppenfeld, T.; Svoboda, M.; DeRose, R.J.; Heurich, M.; Müller, J.; Čížková, P.; Starý, M.; Bače, R.; Donato, D.C. Response of Mountain Picea Abies Forests to Stand-replacing Bark Beetle Outbreaks: Neighbourhood Effects Lead to Self-replacement. J. Appl. Ecol. 2015, 52, 1402–1411. [Google Scholar] [CrossRef]
- Hilmers, T.; Friess, N.; Bässler, C.; Heurich, M.; Brandl, R.; Pretzsch, H.; Seidl, R.; Müller, J. Biodiversity along Temperate Forest Succession. J. Appl. Ecol. 2018, 55, 2756–2766. [Google Scholar] [CrossRef]
- Donato, D.C.; Campbell, J.L.; Franklin, J.F. Multiple Successional Pathways and Precocity in Forest Development: Can Some Forests Be Born Complex? J. Veg. Sci. 2012, 23, 576–584. [Google Scholar] [CrossRef]
- Beudert, B.; Bässler, C.; Thorn, S.; Noss, R.; Schröder, B.; Dieffenbach-Fries, H.; Foullois, N.; Müller, J. Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality. Conserv. Lett. 2015, 8, 272–281. [Google Scholar] [CrossRef]
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-Scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. Bioscience 2008, 58, 501–517. [Google Scholar] [CrossRef]
- Baier, P.; Pennerstorfer, J.; Schopf, A. PHENIPS—A Comprehensive Phenology Model of Ips typographus (L.) (Col., Scolytinae) as a Tool for Hazard Rating of Bark Beetle Infestation. For. Ecol. Manag. 2007, 249, 171–186. [Google Scholar] [CrossRef]
- Berec, L.; Doležal, P.; Hais, M. Population Dynamics of Ips typographus in the Bohemian Forest (Czech Republic): Validation of the Phenology Model PHENIPS and Impacts of Climate Change. For. Ecol. Manag. 2013, 292, 1–9. [Google Scholar] [CrossRef]
- Jakoby, O.; Lischke, H.; Wermelinger, B. Climate Change Alters Elevational Phenology Patterns of the European Spruce Bark Beetle (Ips typographus). Glob. Chang. Biol. 2019, 25, 4048–4063. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and Drivers of Recent Disturbances across the Temperate Forest Biome. Nat. Commun. 2018, 9, 4355. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.; Piaccardi, B.; Celona, F.; Guglini, M.; Gaiani, G.; Ravanelli, G.; Ciampitti, M.; Bazzoli, M.; Craveri, L.; Ballardini, P.; et al. Rapporto Sullo Stato Delle Foreste in Lombardia 2017. Available online: https://www.ersaf.lombardia.it/wp-content/uploads/2023/08/RAPPORTO_STATO_FORESTE_2017_web.pdf (accessed on 29 September 2024).
- Calvo, E.; Piccardi, B.; Celona, F.; Guglini, M.; Ravanelli, G.; Ciampitti, M.; Bazzoli, M.; Craveri, L.; Braghiroli, S. Rapporto Sullo Stato Delle Foreste in Lombardia 2018. Available online: https://www.ersaf.lombardia.it/wp-content/uploads/2023/08/RAPPORTO_STATO_FORESTE_2018.pdf (accessed on 29 September 2024).
- Celona, F.; Guglini, M.; Ravanelli, G.; Ciampitti, M.; Bazzoli, M. Rapporto Sullo Stato Delle Foreste in Lombardia 2019. Available online: https://www.ersaf.lombardia.it/wp-content/uploads/2023/08/RAPPORTO-STATO-FORESTE-2019.pdf_-filename_utf-8RAPPORTO20FORESTE202019.pdf (accessed on 29 September 2024).
- Celona, F.; Guglini, M.; Ciampitti, M.; Bazzoli, M.; Patti, C.; Zanoni, G. Rapporto Sullo Stato Delle Foreste in Lombardia 2020. Available online: https://www.ersaf.lombardia.it/wp-content/uploads/2023/08/RAPPORTO_STATO_FORESTE_2020.pdf (accessed on 29 September 2024).
- Celona, F.; Guglini, M.; Craveri, L.; Bazzoli, M.; Patti, C.; Cornaggia, N. Rapporto Sullo Stato Delle Foreste in Lombardia 2021. Available online: https://www.ersaf.lombardia.it/wp-content/uploads/2023/08/RAPPORTO_STATO_FORESTE_2021.pdf (accessed on 29 September 2024).
- Celona, F.; Guglini, M.; Craveri, L.; Bazzoli, M.; Siena, F.; Cornaggia, N. Rapporto Sullo Stato Delle Foreste in Lombardia 2022. Available online: https://www.ersaf.lombardia.it/wp-content/uploads/2024/02/RAPPORTO_STATO_FORESTE_2022.pdf (accessed on 29 September 2024).
- Bazzoli, M.; Inverardi, E.; Fasolini, D.; Gallo, P.; Porro, T. Relazione Illustrativa Attività di Monitoraggio del Bostrico Ips typographus in Lombardia. 2023. Available online: https://www.fitosanitario.regione.lombardia.it/wps/wcm/connect/6209accc-266a-4461-ae24-d4c6a68f1e9f/Relazione+illustrativa+campagna+bostrico+2023.pdf?MOD=AJPERES (accessed on 29 September 2024).
- Bolte, A.; Ammer, C.; Löf, M.; Nabuurs, G.-J.; Schall, P.; Spathelf, P. Adaptive Forest Management: A Prerequisite for Sustainable Forestry in the Face of Climate Change. In Sustainable Forest Management in a Changing World—A European Perspective; Springer: Berlin/Heidelberg, Germany, 2009; pp. 115–139. [Google Scholar]
- Camarretta, N.; Harrison, P.A.; Bailey, T.; Potts, B.; Lucieer, A.; Davidson, N.; Hunt, M. Monitoring Forest Structure to Guide Adaptive Management of Forest Restoration: A Review of Remote Sensing Approaches. New For. 2020, 51, 573–596. [Google Scholar] [CrossRef]
- Seidl, R.; Turner, M.G. Post-Disturbance Reorganization of Forest Ecosystems in a Changing World. Proc. Natl. Acad. Sci. USA 2022, 119, e2202190119. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, F.; Masiero, M.; Secco, L. Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective. Forests 2022, 13, 939. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-Bandbafha, H. Health Impacts of Greenhouse Gases Emissions on Humans and the Environment. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion; Elsevier: Amsterdam, The Netherlands, 2024; pp. 265–291. [Google Scholar]
- Rapaella, A. La Foresta Ritornerà. La Tempesta Vaia e Le Risorse Messe in Campo in Lombardia. Available online: https://eventi.regione.lombardia.it/it/attachments/file/view?hash=f42f11df77f8f9d1396d9511d723d2a61c4d0ef315427a14d91dbffdd02a7387&canCache=1 (accessed on 29 September 2024).
Tree Types | Area (km2) | Area (%) |
---|---|---|
Early-stage typical larch and fir forest formation | 31.02 | 27.54 |
Montane spruce forest on siliceous mesic soils | 19.87 | 17.64 |
Subalpine altimetric spruce forest on siliceous mesic soils | 18.62 | 16.53 |
Montane spruce forest on siliceous xeric soils | 9.63 | 8.55 |
Primitive larch forest | 6.19 | 5.50 |
Typical larch forest | 5.56 | 4.93 |
Alder tree | 5.32 | 4.73 |
Subalpine altimetric spruce forest on siliceous xeric soils | 4.58 | 4.07 |
Secondary birch forest | 3.16 | 2.81 |
Scots pine forest on siliceous mountain substrates | 2.38 | 2.11 |
Siliceous substrate microthermal heathland | 1.40 | 1.24 |
Typical maple-ash woodland | 1.31 | 1.16 |
Calcareous substrate microthermal heathland | 0.95 | 0.84 |
Primitive Scots pine forest on cliffs | 0.66 | 0.59 |
Primitive birch forest | 0.64 | 0.57 |
Mixed robinia forest | 0.35 | 0.31 |
Early-stage spruce forest formation | 0.33 | 0.29 |
Streamside willow grove | 0.20 | 0.19 |
Conifer reforestation | 0.13 | 0.11 |
Chestnut forest on siliceous xeric soils | 0.09 | 0.08 |
Aspen formations | 0.06 | 0.05 |
Chestnut forest on siliceous mesoxeric soils | 0.05 | 0.05 |
Hazel woodland | 0.05 | 0.04 |
Oak forest on siliceous mesic soils | 0.04 | 0.03 |
Primitive Scots pine forest on scree slopes | 0.04 | 0.03 |
Chestnut forest on siliceous mesic soils | 0.01 | 0.01 |
Scots pine forest on calcareous substrates | <0.01 | <0.01 |
Total | 112.6466 | 100 |
Tree Type | Correspondence with the Categories Defined by Federici et al. (2008) [37] | BEF | WDB (t/m3) | R |
---|---|---|---|---|
Early-stage typical larch and fir forest formation | Stands as larches | 1.22 | 0.56 | 0.29 |
Montane spruce forest on siliceous mesic soils | Stands as Norway spruce | 1.29 | 0.38 | 0.28 |
Subalpine altimetric spruce forest on siliceous mesic soils | Stands as Norway spruce | 1.29 | 0.38 | 0.28 |
Montane spruce forest on siliceous xeric soils | Stands as Norway spruce | 1.29 | 0.38 | 0.28 |
Primitive larch forest | Stands as larches | 1.22 | 0.56 | 0.29 |
Typical larch forest | Stands as larches | 1.22 | 0.56 | 0.29 |
Alder tree | Protective as riparian forest | 1.39 | 0.41 | 0.23 |
Subalpine altimetric spruce forest on siliceous xeric soils | Stands as Norway spruce | 1.29 | 0.38 | 0.28 |
Secondary birch forest | Stands as other broadleaves | 1.47 | 0.53 | 0.24 |
Scots pine forest on siliceous mountain substrates | Stands as mountain pines | 1.33 | 0.47 | 0.36 |
Siliceous substrate microthermal heathland | Protective as shrublands | 1.49 | 0.63 | 0.62 |
Typical maple-ash woodland | Coppices as other broadleaves | 1.53 | 0.53 | 0.24 |
Primitive Scots pine forest on cliffs | Stands as mountain pines | 1.33 | 0.47 | 0.36 |
Primitive birch forest | Stands as other broadleaves | 1.47 | 0.53 | 0.24 |
Early-stage spruce forest formation | Stands as Norway spruce | 1.29 | 0.38 | 0.28 |
Conifer reforestation | Stands as other conifers | 1.37 | 0.43 | 0.29 |
Primitive Scots pine forest on scree slopes | Stands as mountain pines | 1.33 | 0.47 | 0.36 |
Scots pine forest on calcareous substrates | Stands as mountain pines | 1.33 | 0.47 | 0.36 |
Forest Areas | Valdisotto | Valfurva | Sondalo | Total |
---|---|---|---|---|
Pre-Vaia storm (km2) | 25.59 | 17.78 | 26.51 | 69.88 |
Post-Vaia storm (km2) | 24.45 | 17.70 | 26.33 | 68.48 |
Lost due to Vaia storm (km2) | 1.15 | 0.08 | 0.18 | 1.41 |
Lost due to Vaia storm (%) | 4.49 | 0.45 | 0.68 | 2.02 |
Timber Stock (m3) | Valdisotto | Valfurva | Sondalo | Total |
---|---|---|---|---|
Pre-Vaia storm | 632,058 | 381,297 | 353,061 | 1,366,416 |
Post-Vaia storm | 603,728 | 379,513 | 350,671 | 1,333,912 |
Lost due to Vaia storm | 28,330 | 1784 | 2390 | 32,504 |
Lost due to Vaia storm (%) | 4.48 | 0.47 | 0.68 | 2.38 |
Time Period | Considered Prices (€/m3) | Timber Production (million €) | Total | ||
---|---|---|---|---|---|
Valdisotto | Valfurva | Sondalo | |||
Pre-Vaia storm | 73 | 46.14 | 27.83 | 25.77 | 99.75 |
90 | 56.88 | 34.32 | 31.77 | 122.98 | |
119 | 75.21 | 45.37 | 42.01 | 162.60 | |
Post-Vaia storm | 76 | 45.88 | 28.84 | 26.65 | 101.38 |
98 | 59.16 | 37.19 | 34.37 | 130.72 | |
111 | 67.01 | 42.13 | 38.92 | 148.06 | |
Lost due to Vaia storm | 56 | 1.59 | 0.10 | 0.13 | 1.82 |
(3.44%) | (0.36%) | (0.52%) | (4.32%) | ||
59 | 1.67 | 0.11 | 0.14 | 1.92 | |
(2.94%) | (0.31%) | (0.44%) | (1.54%) | ||
63 | 1.78 | 0.11 | 0.15 | 2.05 | |
(2.37%) | (0.25%) | (0.36%) | (2.98%) |
Municipality | AGB (t) | BGB (t) |
---|---|---|
Valdisotto (post-Vaia) | 404.98 | 90.53 |
Valfurva (pre-Vaia) | 210.79 | 47.94 |
Sondalo (pre-Vaia) | 132.25 | 29.88 |
Municipality | Vcs,pre (€/Year) | Vcs,post (€/Year) | Vcs,lost (€/Year) | Vcs,lost (%) |
---|---|---|---|---|
Valdisotto | 40,486 | 38,672 | 1815 | 4.48 |
Valfurva | 16,128 | 16,053 | 75 | 0.47 |
Sondalo | 11,882 | 11,802 | 80 | 0.68 |
Total | 68,496 | 66,527 | 1970 | 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbagallo, B.; Rocca, N.; Cresi, L.; Diolaiuti, G.A.; Senese, A. Enhanced Impacts of Extreme Weather Events on Forest: The Upper Valtellina (Italy) Case Study. Remote Sens. 2024, 16, 3692. https://doi.org/10.3390/rs16193692
Barbagallo B, Rocca N, Cresi L, Diolaiuti GA, Senese A. Enhanced Impacts of Extreme Weather Events on Forest: The Upper Valtellina (Italy) Case Study. Remote Sensing. 2024; 16(19):3692. https://doi.org/10.3390/rs16193692
Chicago/Turabian StyleBarbagallo, Blanka, Nicolò Rocca, Lorenzo Cresi, Guglielmina Adele Diolaiuti, and Antonella Senese. 2024. "Enhanced Impacts of Extreme Weather Events on Forest: The Upper Valtellina (Italy) Case Study" Remote Sensing 16, no. 19: 3692. https://doi.org/10.3390/rs16193692
APA StyleBarbagallo, B., Rocca, N., Cresi, L., Diolaiuti, G. A., & Senese, A. (2024). Enhanced Impacts of Extreme Weather Events on Forest: The Upper Valtellina (Italy) Case Study. Remote Sensing, 16(19), 3692. https://doi.org/10.3390/rs16193692