Monitoring Diesel Spills in Freezing Seawater under Windy Conditions Using C-Band Polarimetric Radar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Scatterometer Instrumentation
2.2.1. Scatterometer Data Collection
2.2.2. Scatterometer Data Processing
2.3. Meteorological Observations and Physical Sampling
2.3.1. Sample Collection
2.3.2. Sample Processing
3. Results
3.1. Experiment Overview
3.2. Meteorological Results
3.3. NRCS Results
3.4. Polarimetric Parameter Results
4. Discussion
4.1. Physical Sampling
4.2. NRCS Analysis
4.3. Polarimetric Parameter Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arctic Monitoring and Assessment Programme. Snow, Water, Ice and Permafrost in the Arctic (Swipa); Summary for Policy-Makers; AMAP: Oslo, Norway, 2017. [Google Scholar]
- Arctic Monitoring and Assessment Programme. Adaptation Actions for a Changing Arctic (AACA)—Bering/Chukchi/Beaufort Region Overview Report; AMAP: Oslo, Norway, 2017. [Google Scholar]
- Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, T.E.; Pitman, J.K.; Schenk, C.J.; Schuenemeyer, J.H.; et al. Assessment of undiscovered oil and gas in the Arctic. Science 2009, 324, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Arctic Monitoring and Assessment Programme. AMAP Assessment 2009: Human Health in the Arctic; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2009. [Google Scholar]
- Arctic Monitoring and Assessment Programme. Assessment 2007: Oil and Gas Activities in the Arctic—Effects and Potential Effects; AMAP: Oslo, Norway, 2010; Volume 1. [Google Scholar]
- Dawson, J.; Carter, N.; van Luijk, N.; Parker, C.; Weber, M.; Cook, A.; Grey, K.; Provencher, J. Infusing Inuit and local knowledge into the Low Impact Shipping Corridors: An adaptation to increased shipping activity and climate change in Arctic Canada. Environ. Sci. Policy 2020, 105, 19–36. [Google Scholar] [CrossRef]
- Dawson, J.; Pizzolato, L.; Howell, S.E.; Copland, L.; Johnston, M.E. Temporal and spatial patterns of ship traffic in the Canadian Arctic from 1990 to 2015. Arctic 2018, 71, 15–26. [Google Scholar] [CrossRef]
- Townhill, B.L.; Reppas-Chrysovitsinos, E.; Sühring, R.; Halsall, C.J.; Mengo, E.; Sanders, T.; Dähnke, K.; Crabeck, O.; Kaiser, J.; Birchenough, S.N. Birchenough. Pollution in the Arctic Ocean: An overview of multiple pressures and implications for ecosystem services. Ambio 2022, 51, 471–483.
- National Energy Board. 2011. Available online: https://www.cer-rec.gc.ca/en/about/north-offshore/arctic-offshore-drilling-review/2011-finalreport/2011fnlrprt-eng.pdf (accessed on 15 February 2021).
- Arctic Council. AGREEMENT on Cooperation on Marine Oil Pollution Preparedness and Response in the Arctic; Arctic Council: Ottawa, ON, Canada, 2013. [Google Scholar]
- The National Oceanic and Atmospheric Administration (NOAA). 2017. Available online: https://response.restoration.noaa.gov/about/media/preventing-and-preparing-oil-spills-arctic.html (accessed on 20 July 2023).
- Melia, N.; Haines, K.; Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 2016, 43, 9720–9728. [Google Scholar] [CrossRef]
- Wadhams, P. Ice in the Ocean; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Armstrong, T. World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Edition 1970. Geneva, Secretariat of the World Meteorological Organization, 1970. [ix], 147 p. [including 175 photos] + corrigenda slip. (WMO/OMM/BMO). J. Glaciol. 1972, 11, 148–149.
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Solberg, A.H.S. Remote sensing of ocean oil-spill pollution. IEEE 2012, 100, 2931–2945. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Fingas, M. Oil Spill Remote Sensing. In Oil Spill Science and Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 306–360. [Google Scholar]
- Puestow, T.; Parsons, L.; Zakharov, I.; Cater, N.; Bobby, P.; Fuglem, M.; Parr, G.; Jayasiri, A.; Warren, S.; Warbanski, G. Oil Spill Detection and Mapping in Low Visibility and Ice: Surface Remote Sensing. In Arctic Oil Spill Response Technology Joint Industry Programme (JIP); 2013.
- Brekke, C.; Holt, B.; Jones, C.; Skrunes, S. Discrimination of Oil Spills from Newly Formed Sea Ice by Synthetic Aperture Radar. Remote Sens. Environ. 2014, 145, 1–14. [Google Scholar] [CrossRef]
- Johansson, A.M.; Brekke, C.; Spreen, G. Multi-frequency polarimetric SAR signatures of lead sea ice and oil spills. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1872–1875. [Google Scholar]
- Myrnes, M.; Brekke, C.; Ferro-Famil, L.; Petrich, C. Polarimetric analysis of oil contaminated laboratory grown saltwater ice imaged by a ground based SAR. In Proceedings of the 12th European Conference on Synthetic Aperture Radar, Munich, Germany, 4–7 June 2018; pp. 1–4. [Google Scholar]
- AJohansson, M.; Espeseth, M.M.; Brekke, C.; Holt, B. Can mineral oil slicks be distinguished from newly formed sea ice using synthetic aperture radar? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4996–5010. [Google Scholar] [CrossRef]
- Asihene, E.; Desmond, D.S.; Harasyn, M.L.; Landry, D.; Veenaas, C.; Mansoori, A.; Fuller, M.C.; Stern, G.; Barber, D.G.; Gilmore, C.; et al. Toward the Detection of Oil Spills in Newly Formed Sea Ice Using C-Band Multipolarization Radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Asihene, E.; Stern, G.; Barber, D.G.; Gilmore, C.; Isleifson, D. Toward the Discrimination of Oil Spills in Newly Formed Sea Ice Using C-Band Radar Polarimetric Parameters. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y. Random similarity-based entropy/alpha classification of PolSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5712–5723. [Google Scholar] [CrossRef]
- Praks, J.; Koeniguer, E.C.; Hallikainen, M.T. Alternatives to target entropy and alpha angle in SAR polarimetry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2262–2274. [Google Scholar] [CrossRef]
- Isleifson, D.; Hwang, B.; Barber, D.G.; Scharien, R.K.; Shafai, L. C-Band Polarimetric Backscattering Signatures of Newly Formed Sea Ice During Fall Freeze-Up. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3256–3267. [Google Scholar] [CrossRef]
- Geldsetzer, T.; Yackel, J.J. Sea ice type and open water discrimination using dual co-polarized C-band SAR. Can. J. Remote Sens. 2009, 35, 73–84. [Google Scholar] [CrossRef]
- Shokr, M.; Nirmal, S.K. Sea Ice: Physics and Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Drinkwater, M.R.; Kwok, R.; Rignot, E.; Israelsson, H.; Onstott, R.G.; Winebrenner, D.P. Potential Applications of Polarimetry to the Classification of Sea Ice. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA; pp. 419–430.
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Marine Board; Ocean Studies Board; National Research Council. Responding to Oil Spills in the U.S. Arctic Marine Environment; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Neusitzer, T.D.; Firoozy, N.; Tiede, T.M.; Desmond, D.S.; Lemes, M.J.; Stern, G.A.; Rysgaard, S.; Mojabi, P.; Barber, D.G. Examining the impact of a crude oil spill on the permittivity profile and normalized radar cross section of young sea ice. IEEE Trans. Geosci. Remote Sens. 2018, 56, 921–936. [Google Scholar] [CrossRef]
- Onstott, R.G. SAR and Scatterometer Signatures of Sea Ice. In Microwave Remote Sensing of Sea Ice; Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992; pp. 73–104. [Google Scholar]
- Isleifson, D.; Mead, J.B.; Fuller, M.C.; Hicks, L.; Desmond, D.; Asihene, E.; Stern, G.A.; Barber, D.G. A Multi frequency Suite of Polarimetric Scatterometers for Arctic Remote Sensing. In Proceedings of the URSI International Symposium on Electromagnetic Theory, Vancouver, BC, Canada, 22–26 May 2023. [Google Scholar]
- Hallikainen, M.T.; Winebrenner, D. The Physical Basis for Sea Ice Remote Sensing. In Microwave Remove Sensing of Sea Ice; Carsey, F.D., Ed.; American Geoph: Washington, DC, USA, 1992; pp. 29–46. [Google Scholar]
- Pottier, S.R.; Cloude, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar]
- Grekov, A.N.; Grekov, N.A.; Sychov, E.N. Estimating quality of indirect measurements of sea water sound velocity by CTD data. Measurement, 2021; 175, 109073. [Google Scholar]
- Saltymakova, D.; Desmond, D.S.; Isleifson, D.; Firoozy, N.; Neusitzer, T.D.; Xu, Z.; Lemes, M.; Barber, D.G.; Stern, G.A. Effect of dissolution, evaporation, and photooxidation on crude oil chemical composition, dielectric properties and its radar signature in the Arctic environment. Mar. Pollut. Bull. 2020, 151, 110629. [Google Scholar] [CrossRef]
- Onstott, R.; Gogineni, P.; Gow, A.; Grenfell, T.; Jezek, K.; Perovich, D.; Swift, C. Electromagnetic and physical properties of sea ice formed in the presence of wave action. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1764–1783. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A. Surface Characteristics of Lead Ice. J. Geophys. Res. 1994, 99, 16341–16350. [Google Scholar] [CrossRef]
- Isleifson, D.; Harasyn, M.L.; Landry, D.; Babb, D.; Asihene, E. Observations of Thin First Year Sea Ice Using a Suite of Surface Radar, LiDAR, and Drone Sensors. Can. J. Remote Sens. 2023, 49, 2226220. [Google Scholar] [CrossRef]
- Isleifson, D.; Harasyn, M.L.; Landry, D.; Babb, D.; Asihene, E. Modeling Backscatter from Oil-Contaminated Sea Ice Using a Multi-Layered Scattering Model. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3031–3034. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38, L10602. [Google Scholar] [CrossRef]
Parameter | C-SCAT |
---|---|
Center frequency | 5.5 GHz |
Sweep bandwidth | 500 MHz |
Transmitted power | −6 dBm |
Range resolution | 30 cm |
Antenna type | Parabolic reflector with dual-polarized feed |
Antenna half-power beamwidth | 5.7° |
Crosspolarization isolation | >28 dB |
Polarization modes | VV, VH, HV, HH |
External calibration | Trihedral corner reflector |
Sensitivity at 5 m range | −56 dB m2/m2 |
Date | 13 March | 14 March | 17 March | ||||||
---|---|---|---|---|---|---|---|---|---|
Sampling time | 8:00 a.m. | 8:00 a.m. | 10:30 a.m. | ||||||
Sampling site | 3 | 5 | 11 | 4 | 10 | 12 | 3 | 5 | 11 |
Liquid diesel (3 mm layer) | X | X | X | X | X | X | - | - | - |
Water below diesel layer (>5 mm layer) | X | X | X | X | X | X | - | - | - |
Water below diesel (1 L) | X | X | X | X | X | X | - | - | - |
Water bottom tank (1 L) | X | X | X | X | X | X | X | X | X |
Water below ice (1 L) | - | - | - | - | - | - | X | X | X |
Oily slush (mixture of liquid diesel and slush ice) | - | - | - | - | - | - | X | X | X |
Surface ice scrapes light spots | - | - | - | - | - | - | X | X | X |
Surface ice scrapes dark spots | - | - | - | - | - | - | X | X | X |
Bulk ice samples | - | - | - | - | - | - | X | X | X |
Date | 13 March | 14 March | 17 March | ||||||
---|---|---|---|---|---|---|---|---|---|
Sampling time | 8:00 a.m. | 8:00 a.m. | 10:30 a.m. | ||||||
Sampling site | 3 | 5 | 11 | 4 | 10 | 12 | 3 | 5 | 11 |
Sea-ice thickness | - | - | - | - | - | - | 2.6 | 2.7 | 2.7 |
Sea-ice surface salinity (Light spots) | - | - | - | - | - | - | 12.8 | 15.2 | 15.7 |
Sea-ice surface salinity (Dark spots) | - | - | - | - | - | - | 14.2 | 17.2 | 17.7 |
Sea-ice bulk salinity | - | - | - | - | - | - | 12.9 | 10.7 | 19.62 |
Sea-ice surface temperature | - | - | - | - | - | - | −2.13 | ||
Oil volume fraction | - | - | - | - | - | - | 0.242 | 0.229 | 0.216 |
Water surface temperature | 6.24 | 1.25 | - | - | - | ||||
Slush surface temperature | - | - | - | - | - | - | −4.47 | ||
Diesel thickness | 3 mm | 3 mm | 3 mm | ||||||
Diesel surface temperature | 7.53 | 2.52 | - | - | - | ||||
Slush salinity | - | - | - | - | - | - | 26.8 | 33.1 | 36.1 |
Water Salinity (Below layers) | 20.6 | 20.9 | 20.7 | 20.7 | 20.7 | 20.5 | 21.2 | ||
Water Salinity (Bottom tank) | 20.8 | 20.9 | 20.8 | 20.8 | 20.8 | 20.3 | 21.3 | 21.2 | 21.4 |
Volumetric Measurements | Accuracy | Limit of Detection |
---|---|---|
Total Volume Bulk Ice | ≤2 mL | N/A |
Oil Volume | ≤0.3 mL | 0.3 mL |
Total Volume Ice Scraps | ≤0.5 mL | N/A |
Total Volume Water Column | ≤6 mL | N/A |
Normalized Radar Cross Section (NRCS) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Angles | 20° | 25° | |||||||||||
Stage 1 | Stage 2 | Stage 3 | Stage 1 | Stage 2 | Stage 3 | ||||||||
States | Average | STD | Average | STD | Minimum | Maximum | Average | STD | Average | STD | Minimum | Maximum | |
VV | −25.59 | 0.23 | −24.78 | 0.84 | −25.16 | −19.47 | −37.35 | 0.52 | −33.79 | 1.98 | −31.6 | −21.44 | |
HH | −30.31 | 0.33 | −28.49 | 0.82 | −28.16 | −23.06 | −35.31 | 0.35 | −34.98 | 1.01 | −33.89 | −21.44 | |
HV | −37.85 | 0.17 | −37.79 | 0.31 | −37.44 | −26.82 | −45.89 | 0.64 | −44.55 | 0.6 | −44.04 | −29.28 |
Backscattering Ratios | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Angles | 20° | 25° | |||||||||||
Stage 1 | Stage 2 | Stage 3 | Stage 1 | Stage 2 | Stage 3 | ||||||||
States | Average | STD | Average | STD | Average | STD | Average | STD | Average | STD | Average | STD | |
Rco | 4.75 | 0.44 | 3.73 | 0.43 | 3.83 | 0.11 | −2.13 | 0.77 | 0.88 | 1.84 | 2.48 | 0.24 | |
Rxo | 12.25 | 0.26 | 12.87 | 0.85 | 13.97 | 0.65 | 8.6 | 0.71 | 10.45 | 1.68 | 12.77 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabihi Mayvan, M.; Asihene, E.; Desmond, D.; Hicks, L.; Polcwiartek, K.; Stern, G.A.; Isleifson, D. Monitoring Diesel Spills in Freezing Seawater under Windy Conditions Using C-Band Polarimetric Radar. Remote Sens. 2024, 16, 379. https://doi.org/10.3390/rs16020379
Zabihi Mayvan M, Asihene E, Desmond D, Hicks L, Polcwiartek K, Stern GA, Isleifson D. Monitoring Diesel Spills in Freezing Seawater under Windy Conditions Using C-Band Polarimetric Radar. Remote Sensing. 2024; 16(2):379. https://doi.org/10.3390/rs16020379
Chicago/Turabian StyleZabihi Mayvan, Mahdi, Elvis Asihene, Durell Desmond, Leah Hicks, Katarzyna Polcwiartek, Gary A. Stern, and Dustin Isleifson. 2024. "Monitoring Diesel Spills in Freezing Seawater under Windy Conditions Using C-Band Polarimetric Radar" Remote Sensing 16, no. 2: 379. https://doi.org/10.3390/rs16020379
APA StyleZabihi Mayvan, M., Asihene, E., Desmond, D., Hicks, L., Polcwiartek, K., Stern, G. A., & Isleifson, D. (2024). Monitoring Diesel Spills in Freezing Seawater under Windy Conditions Using C-Band Polarimetric Radar. Remote Sensing, 16(2), 379. https://doi.org/10.3390/rs16020379