Manifestation of Gas Seepage from Bottom Sediments on the Sea Surface: Theoretical Model and Experimental Observations
Abstract
:1. Introduction
2. Theoretical Model
2.1. Problem Statement
2.2. Simulation Results
- At the upwind boundary of the gas seep on the water surface, conditions for an intense breaking of short waves arise. As a result, these waves do not go further. A semicircular band of increased roughness (suloy) is formed, framing the upwind part of the perturbation region.
- Short waves directly above the area of the gas seep to the water surface are almost absent. A rounded area of reduced roughness (a slick), which marks the place of the gas seep, is formed.
- The effect of the gas seep area on the water surface on long wind waves is weak. In turn, the effect of the long wave on the gas seep on the sea surface is significant.
- For the remote detection of the surface manifestation of the gas seep to the water surface, it is optimal to use radar equipment of the centimeter wavelength range capable of forming a spatial image.
- The area of the gas seep surface manifestation is several times larger than the gas jet diameter and depends on the parameters of the wind wave, the background current velocity, and the gas jet power.
3. Experimental Simulation
4. Full-Scale Experiment
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleischer, P.; Orsi, T.H.; Richardson, M.D.; Anderson, A.L. Distribution of free gas in marine sediments: A global overview. Geo-Mar. Lett. 2001, 21, 103–122. [Google Scholar]
- Naudts, L.; Greinert, J.; Artemov, Y.; Staelens, P.; Poort, J.; Van Rensbergen, P.; De Batist, M. Geological and morphological settings of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar. Geol. 2006, 227, 177–199. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I. Methane release and coastal environment in the East Siberian Arctic shelf. J. Mar. Syst. 2007, 66, 227–243. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Lett 2005, 25, 167–182. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, O. Extensive methane venting to the atmosphere from the sediments of the east Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Rekant, P.; Salyuk, A.; Kosmach, D. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf. J. Geophys. Res. 2010, 115, C08007. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. B 2015, 373, 20140451. [Google Scholar] [CrossRef] [PubMed]
- Steinbacha, J.; Holmstranda, H.; Shcherbakova, K.; Kosmachd, D.; Brüchert, V.; Shakhova, N.; Salyuk, A.; Sapart, C.J.; Chernykh, D.; Noormets, R.; et al. Source apportionment of methane escaping the subseapermafrost system in the outer Eurasian Arctic Shelf. Proc. Natl. Acad. Sci. USA 2021, 118, e2019672118. [Google Scholar] [CrossRef]
- Gramberg, I.S.; Kulakov, Y.N.; Pogrebitskiy, Y.Y.; Sorokov, D.S. Arctic Oil and Gas Super Basin; X World Petroleum Congress: London, UK, 1983; pp. 93–99. [Google Scholar]
- Soloviev, V.A.; Ginzburg, G.D.; Telepnev, E.V.; Mikhaluk, Y.N. Cryothermia and Gas Hydrates in the Arctic Ocean; Sevmorgeologia: Leningrad, Russia, 1987; 150p. (In Russian) [Google Scholar]
- Kvenvolden, K.A. Methane hydrates and global climate. Glob. Biogeochem. Cycles 1988, 2, 221–229. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Reeburgh, W.S. Oceanic methane biogeochemistry. Chem. Rev. 2007, 107, 486–513. [Google Scholar] [CrossRef] [PubMed]
- Wild, B.; Shakhova, N.; Dudarev, O.; Ruban, A.; Kosmach, D.; Tumskoy, V.; Tesi, T.; Grimm, H.; Nybom, I.; Matsubara, F.; et al. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea. Nat. Commun. 2022, 13, 5057. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.E.; Semiletov, I.P.; Chuvilin, E.M. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef]
- Krylov, A.A.; Ananiev, R.A.; Chernykh, D.V.; Alekseev, D.A.; Balikhin, E.I.; Dmitrevsky, N.N.; Novikov, M.A.; Radiuk, E.A.; Domaniuk, A.V.; Kovachev, S.A.; et al. A Complex of Marine Geophysical Methods for Studying Gas Emission Process on the Arctic Shelf. Sensors 2023, 23, 3872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Song, H.; Chen, J.; Geng, M.; Liu, B. Gas Seepage Detection and Gas Migration Mechanisms. In South China Sea Seeps; Chen, D., Feng, D., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Hsu, C.W.; MacDonald, I.R.; Römer, M.; Pape TSahling, H.; Wintersteller, P.; Bohrmann, G. Characteristics and hydrocarbon seepage at the Challenger Knoll in the Sigsbee Basin, Gulf of Mexico. Geo-Mar. Lett. 2019, 39, 391–399. [Google Scholar] [CrossRef]
- Daneshgar Asl, S.; Dukhovskoy, D.S.; Bourassa, M.; MacDonald, I.R. Hindcast modeling of oil slick persistence from natural seeps. Remote Sens. Environ. 2017, 189, 96–107. [Google Scholar] [CrossRef]
- Suresh, G.; Melsheimer, C.; Körber, J.-H.; Bohrmann, G. Automatic Estimation of Oil Seep Locations in Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4218–4230. [Google Scholar] [CrossRef]
- Chernykh, D.; Yusupov, V.; Salomatin, A.; Kosmach, D.; Shakhova, N.; Gershelis, E.; Konstantinov, A.; Grinko, A.; Chuvilin, E.; Dudarev, O.; et al. Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shel. Geosciences 2020, 10, 411. [Google Scholar] [CrossRef]
- Bondur, V.G.; Kuznetsova, T.V. Detecting Gas Seeps in Arctic Water Areas Using Remote Sensing Data. Izv. Atmos. Ocean. Phys. 2015, 51, 1060–1072. [Google Scholar] [CrossRef]
- Taylor, G.I. The action of a surface current used as a breakwater. Proc. R. Soc. 1955, 231, 466–478. [Google Scholar] [CrossRef]
- Evans, J.T. Pneumatic and similar breakwaters. Proc. R. Soc. 1955, 231, 457–466. [Google Scholar] [CrossRef]
- Ermoshkin, A.; Molkov, A. High-Resolution Radar Sensing Sea Surface States During AMK-82 Cruise. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2660–2666. [Google Scholar] [CrossRef]
- Pelinovsky, E.N. (Ed.) The Impact of Large-Scale Internal Waves on the Sea Surface; Collection of Scientific Articles; IAP of the USSR Academy of Sciences: Gorky, Russia, 1982; p. 250. [Google Scholar]
- Bakhanov, V.V.; Ostrovsky, L.A. Action of strong internal solitary waves on surface waves. J. Geophys. Res. 2002, 107, 3139. [Google Scholar] [CrossRef]
- Da Silva, J.C.B.; Ermakov, S.A.; Robinson, I.S.; Jeans, D.R.G.; Kijashko, S.V. Role of surface films in ERS SAR signatures of internal waves on the shelf 1. Short-period internal waves. J. Geophys. Res. 1998, 103, 8009–8031. [Google Scholar] [CrossRef]
- Troitskaya, Y.I. Modulation of the growth rate of short, surface capillary-gravity wind waves by a long wave. J. Fluid Mech. 1994, 273, 169–187. [Google Scholar] [CrossRef]
- Toné, A.J.; Pacheco, C.H.; Lima Neto, I.E. Circulation induced by diffused aeration in a shallow lake. Water SA 2017, 43, 36–41. [Google Scholar] [CrossRef]
- Valenzuela, G.R. Theories for the interaction of electromagnetic and oceanic waves—A review. Bound. Layer Meteorol. 1978, 13, 61–85. [Google Scholar] [CrossRef]
- Johnson, J.T.; Chuang, C.W. Quantitative Evaluation of Ocen Surface Spectral Model Influence on Sea Surface Backscattering; Technical Report 738927-1; Office of Naval Research: Arlington, VA, USA, 2000; p. 47. [Google Scholar]
- Hughes, B.A. The effect of internal waves on surface wind waves. 2. Theoretical analysis. J. Geophys. Res. 1978, 83, 455–465. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Danièle, H.; Caudal, G.; Chapron, B. A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. 2003, 108, 8054. [Google Scholar] [CrossRef]
- Bulatov, M.G.; Kravtsov, Y.A.; Raev, M.D.; Repina, I.A.; Skvortsov, E.I. Microwave, optical and IR combined studies of the sea surface perturbations caused by underwater gas bubble plume. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 5, pp. 2983–2985. [Google Scholar] [CrossRef]
- Bulatov, M.G.; Kravtsov, Y.A.; Pungin, V.G.; Raev, M.D.; Skvortsov, E.I. Microwave radiation and backscatter of the sea surface perturbed by underwater gas bubble flow. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Proceedings, Toulouse, France, 21–25 July 2003; Volume 4, pp. 2668–2670. [Google Scholar] [CrossRef]
Case in Figure 4 | uw, m/s | uc, cm/s | Qw, ° | Qc, ° | Hs, cm | Tp, s |
---|---|---|---|---|---|---|
a | 1.5 | 6 | 340 | 250 | 78 | 6.25 |
b | 2 | 8 | 340 | 270 | 72 | 6.25 |
c | 2.5 | 12 | 0 | 260 | 70 | 4.76 |
d | 3 | 5 | 0 | 240 | 41 | 4.76 |
e | 2 | 8 | 0 | 260 | 73 | 5.56 |
f | 0.5 | 15 | 130 | 250 | 62 | 6.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermoshkin, A.; Kapustin, I.; Molkov, A.; Semiletov, I. Manifestation of Gas Seepage from Bottom Sediments on the Sea Surface: Theoretical Model and Experimental Observations. Remote Sens. 2024, 16, 408. https://doi.org/10.3390/rs16020408
Ermoshkin A, Kapustin I, Molkov A, Semiletov I. Manifestation of Gas Seepage from Bottom Sediments on the Sea Surface: Theoretical Model and Experimental Observations. Remote Sensing. 2024; 16(2):408. https://doi.org/10.3390/rs16020408
Chicago/Turabian StyleErmoshkin, Aleksey, Ivan Kapustin, Aleksandr Molkov, and Igor Semiletov. 2024. "Manifestation of Gas Seepage from Bottom Sediments on the Sea Surface: Theoretical Model and Experimental Observations" Remote Sensing 16, no. 2: 408. https://doi.org/10.3390/rs16020408
APA StyleErmoshkin, A., Kapustin, I., Molkov, A., & Semiletov, I. (2024). Manifestation of Gas Seepage from Bottom Sediments on the Sea Surface: Theoretical Model and Experimental Observations. Remote Sensing, 16(2), 408. https://doi.org/10.3390/rs16020408