Fast Magnetization Vector Inversion Method with Undulating Observation Surface in Spherical Coordinate for Revealing Lunar Weak Magnetic Anomaly Feature
Abstract
:1. Introduction
2. A Fast Magnetization Vector Inversion Method with an Undulating Observation Surface in a Spherical Coordinate System
3. Theoretical Model Tests
4. The Origin of the Lunar Weak Magnetic Anomalies
4.1. Mare Australe
4.2. Mare Crisium
5. Discussion
5.1. Causes of Magnetic Anomalies in the Mare Australe Region
5.2. Causes of Magnetic Anomalies in the Mare Crisium Region
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lelièvre, P.G.; Oldenburg, D.W. A 3D total magnetization inversion applicable when significant, complicated remanence is present. Geophysics 2009, 74, L21–L30. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.Y.; Zhang, H.L.; Geng, M.X.; Zuo, B.X. 3D Magnetization Vector Inversion of Magnetic Data: Improving and Comparing Methods. Pure Appl. Geophys. 2017, 174, 4421–4444. [Google Scholar] [CrossRef]
- Fournier, D.; Heagy, L.J.; Oldenburg, D.W. Sparse magnetic vector inversion in spherical coordinates. Geophysics 2020, 85, J33–J49. [Google Scholar] [CrossRef]
- Ghalehnoee, M.H.; Ansari, A. Compact magnetization vector inversion. Geophys. J. Int. 2021, 228, 1–16. [Google Scholar] [CrossRef]
- Jorgensen, M.; Zhdanov, M. Application of gramian and focusing structural constraints to joint inversion of gravity and magnetic data. In Proceedings of the NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, Online, 7–8 December 2020; Volume 2020, pp. 1–5. [Google Scholar]
- Liang, Q.; Chen, C.; Li, Y.G. 3-D inversion of gravity data in spherical coordinates with application to the GRAIL data. J. Geophys. Res. Planets 2014, 119, 1359–1373. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Yan, J.; Wang, H.; Rodriguez, J.A.P.; Qiu, Y. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame. Earth Planets Space 2018, 70, 58. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, C.; Kaban, M.K.; Thomas, M. Upper-mantle density structure in the Philippine Sea and adjacent region and its relation to tectonics. Geophys. J. Int. 2019, 219, 945–957. [Google Scholar] [CrossRef]
- Zhong, Y.; Ren, Z.; Tang, J.; Lin, Y.; Chen, B.; Deng, Y.; Jiang, Y. Constrained Gravity Inversion with Adaptive Inversion Grid Refinement in Spherical Coordinates and Its Application to Mantle Structure Beneath Tibetan Plateau. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022916. [Google Scholar] [CrossRef]
- Hou, Z.; Sun, B.; Qin, P.; Zhang, C.; Meng, Z. Joint Nonlinear Inversion of Full Tensor Gravity Gradiometry Data and Its Parallel Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Liu, S.; Jin, S.; Chen, Q. Three-dimensional gravity inversion based on optimization processing from edge detection. Geodesy Geodyn. 2022, 13, 503–524. [Google Scholar] [CrossRef]
- Hou, Z.; Wei, J.; Mao, T.; Zheng, Y.; Ding, Y. 3D inversion of vertical gravity gradient with multiple graphics processing units based on matrix compression. Geophysics 2022, 87, F67–F80. [Google Scholar] [CrossRef]
- Del Razo Gonzalez, A.; Yutsis, V. Robust 3D Joint Inversion of Gravity and Magnetic Data: A High-Performance Computing Approach. Appl. Sci. 2023, 13, 11292. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, B.; Uieda, L.; Liu, J.; Kaban, M.K.; Chen, L.; Guo, R. Efficient 3-D Large-Scale Forward Modeling and Inversion of Gravitational Fields in Spherical Coordinates with Application to Lunar Mascons. J. Geophys. Res. Solid Earth 2019, 124, 4157–4173. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, J.; Chen, B.; Kaban, M.K.; Du, J. 3-D Density Structure of the Lunar Mascon Basins Revealed by a High-Efficient Gravity Inversion of the GRAIL Data. J. Geophys. Res. Planets 2021, 126, e2021JE006841. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, G.; Wang, T.; Xiong, S. The Efficient 3D Gravity Focusing Density Inversion Based on Preconditioned JFNK Method under Undulating Terrain: A Case Study from Huayangchuan, Shaanxi Province, China. Minerals 2020, 10, 741. [Google Scholar] [CrossRef]
- Ma, G.; Niu, R.; Gao, T.; Li, L.; Wang, T.; Meng, Q. High-Efficiency Gravity Data Inversion Method Based on Locally Adaptive Unstructured Meshing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–7. [Google Scholar] [CrossRef]
- Niu, R.; Ma, G.; Wang, T.; Li, L.; Gao, T. Joint Inversion Method of Gravity and Magnetic Analytic Signal Data with Adaptive Unstructured Tetrahedral Subdivision. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–9. [Google Scholar] [CrossRef]
- Dyal, P.; Parkin, C.W.; Sonett, C.P. Apollo 12 Magnetometer: Measurement of a Steady Magnetic Field on the Surface of the Moon. Science 1970, 169, 762–764. [Google Scholar] [CrossRef]
- Runcorn, S.K.; Collinson, D.W.; O’Reilly, W.; Stephenson, A.; Greenwood, N.N.; Battey, M.H. Magnetic Properties of Lunar Samples. Science 1970, 167, 697–699. [Google Scholar] [CrossRef]
- Strangway, D.W.; Pearce, G.W.; Gose, W.A.; Timme, R.W. Remanent magnetization of lunar samples. Earth Planet. Sci. Lett. 1971, 13, 43–52. [Google Scholar] [CrossRef]
- Hide, R. Comments on the moon’s magnetism. Moon 1972, 4, 39. [Google Scholar] [CrossRef]
- Daily, W.D.; Dyal, P. Theories for the Origin of Lunar Magnetism; Eyring Research Institute: Provo, UT, USA; NASA—Ames Research Center: Moffett Field, CA, USA, 1979; Volume 20, pp. 255–270. [Google Scholar]
- Cisowski, S.M.; Collinson, D.W.; Runcorn, S.K.; Stephenson, A.; Fuller, M. A review of lunar paleointensity data and implications for the origin of lunar magnetism. J. Geophys. Res. Solid Earth 1983, 88, A691–A704. [Google Scholar] [CrossRef]
- Runcorn, S.K. Lunar magnetism, polar displacements and primeval satellites in the Earth–Moon system. Nature 1983, 304, 589–596. [Google Scholar] [CrossRef]
- Runcorn, S.K. The formation of the lunar core. Geochim. Cosmochim. Acta 1996, 60, 1205–1208. [Google Scholar] [CrossRef]
- Garrick-Bethell, I.; Weiss, B.P.; Shuster, D.L.; Buz, J. Early Lunar Magnetism. Science 2009, 323, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Cournède, C.; Gattacceca, J.; Rochette, P. Magnetic study of large Apollo samples: Possible evidence for an ancient centered dipolar field on the Moon. Earth Planet. Sci. Lett. 2012, 331–332, 31–42. [Google Scholar] [CrossRef]
- Weiss, B.P.; Tikoo, S.M. The lunar dynamo. Science 2014, 346, 1246753. [Google Scholar] [CrossRef] [PubMed]
- Srnka, L.J.; Martelli, G.; Newton, G.; Cisowski, S.M.; Fuller, M.D.; Schaal, R.B. Magnetic field and shock effects and remanent magnetization in a hypervelocity impact experiment. Earth Planet. Sci. Lett. 1979, 42, 127–137. [Google Scholar] [CrossRef]
- Hood, L.L. Magnetic field and remanent magnetization effects of basin-forming impacts on the Moon. Geophys. Res. Lett. 1987, 14, 844–847. [Google Scholar] [CrossRef]
- Crawford, D.A.; Schultz, P.H. Laboratory observations of impact–generated magnetic fields. Nature 1988, 336, 50–52. [Google Scholar] [CrossRef]
- Crawford, D.A.; Schultz, P.H. Laboratory investigations of impact-generated plasma. J. Geophys. Res. Planets 1991, 96, 18807–18817. [Google Scholar] [CrossRef]
- Crawford, D.A.; Schultz, P.H. Electromagnetic properties of impact-generated plasma, vapor and debris. Int. J. Impact Eng. 1999, 23, 169–180. [Google Scholar] [CrossRef]
- Hood, L.L.; Huang, Z. Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations. J. Geophys. Res. Solid Earth 1991, 96, 9837–9846. [Google Scholar] [CrossRef]
- Gattacceca, J.; Boustie, M.; Hood, L.; Cuq-Lelandais, J.P.; Fuller, M.; Bezaeva, N.S.; de Resseguier, T.; Berthe, L. Can the lunar crust be magnetized by shock: Experimental groundtruth. Earth Planet. Sci. Lett. 2010, 299, 42–53. [Google Scholar] [CrossRef]
- Hood, L.L. Central magnetic anomalies of Nectarian-aged lunar impact basins: Probable evidence for an early core dynamo. Icarus 2011, 211, 1109–1128. [Google Scholar] [CrossRef]
- Evans, A.J.; Tikoo, S.M.; Andrews-Hanna, J.C. The Case Against an Early Lunar Dynamo Powered by Core Convection. Geophys. Res. Lett. 2018, 45, 98–107. [Google Scholar] [CrossRef]
- Crawford, D.A. Simulations of magnetic fields produced by asteroid impact: Possible implications for planetary paleomagnetism. Int. J. Impact Eng. 2020, 137, 103464. [Google Scholar] [CrossRef]
- Oran, R.; Weiss, B.P.; Shprits, Y.; Miljković, K.; Tóth, G. Was the moon magnetized by impact plasmas? Sci. Adv. 2020, 6, eabb1475. [Google Scholar] [CrossRef]
- Tarduno, J.A.; Cottrell, R.D.; Lawrence, K.; Bono, R.K.; Huang, W.; Johnson, C.L.; Blackman, E.G.; Smirnov, A.V.; Nakajima, M.; Neal, C.R.; et al. Absence of a long-lived lunar paleomagnetosphere. Sci. Adv. 2021, 7, eabi7647. [Google Scholar] [CrossRef]
- Whaler, K.A.; Purucker, M.E. A spatially continuous magnetization model for Mars. J. Geophys. Res. Planets 2005, 110, E09001. [Google Scholar] [CrossRef]
- Naidu, P. Spectrum of the potential field due to randomly distributed sources. Geophysics 1968, 33, 337–345. [Google Scholar] [CrossRef]
- Anderson, E.G. The Effect of Topography on Solutions of Stokes’ Problem; School of Surveying, University of New South Wales: Kensington, NSW, Australia, 1976. [Google Scholar]
- Asgharzadeh, M.F.; Von Frese, R.R.B.; Kim, H.R.; Leftwich, T.E.; Kim, J.W. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int. 2007, 169, 1–11. [Google Scholar] [CrossRef]
- Du, J.; Chen, C.; Lesur, V.; Lane, R.; Wang, H. Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system. Geophys. J. Int. 2015, 201, 1977–2007. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of ill-posed problems. Math. Comput. 1977, 32, 491. [Google Scholar]
- Hansen, P.C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve. SIAM Rev. 1992, 34, 561–580. [Google Scholar] [CrossRef]
- Hansen, P.C.; O’Leary, D.P. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar] [CrossRef]
- Calvetti, D.; Morigi, S.; Reichel, L.; Sgallari, F. Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 2000, 123, 423–446. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Ravat, D.; Purucker, M.E.; Olsen, N. Lunar Magnetic Field Models from Lunar Prospector and SELENE/Kaguya Along-Track Magnetic Field Gradients. J. Geophys. Res. Planets 2020, 125, e2019JE006187. [Google Scholar] [CrossRef]
- Ji, J.; Guo, D.; Liu, J.; Chen, S.; Ling, Z.; Ding, X.; Han, K.; Chen, J.; Cheng, W.; Zhu, K.; et al. The 1:2,500,000-scale geologic map of the global Moon. Sci. Bull. 2022, 67, 1544–1548. [Google Scholar] [CrossRef]
- Hood, L.L.; Artemieva, N.A. Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus 2008, 193, 485–502. [Google Scholar] [CrossRef]
- Mayhew, M.A.; Johnson, B.D.; Wasilewski, P.J. A review of problems and progress in studies of satellite magnetic anomalies. J. Geophys. Res. Solid Earth 1985, 90, 2511–2522. [Google Scholar] [CrossRef]
- Nicholas, J.B.; Purucker, M.E.; Sabaka, T.J. Age spot or youthful marking: Origin of Reiner Gamma. Geophys. Res. Lett. 2007, 34, L02205. [Google Scholar] [CrossRef]
- Carley, R.A.; Whaler, K.A.; Purucker, M.E.; Halekas, J.S. Magnetization of the lunar crust. J. Geophys. Res. Planets 2012, 117, E08001. [Google Scholar] [CrossRef]
- Hood, L.L.; Torres, C.B.; Oliveira, J.S.; Wieczorek, M.A.; Stewart, S.T. A New Large-Scale Map of the Lunar Crustal Magnetic Field and Its Interpretation. J. Geophys. Res. Planets 2021, 126, e2020JE006667. [Google Scholar] [CrossRef]
- Arkani-Hamed, J. The history of the core dynamos of Mars and the Moon inferred from their crustal magnetization: A brief review. Can. J. Earth Sci. 2018, 56, 917–931. [Google Scholar] [CrossRef]
- Takahashi, F.; Tsunakawa, H. Thermal core-mantle coupling in an early lunar dynamo: Implications for a global magnetic field and magnetosphere of the early Moon. Geophys. Res. Lett. 2009, 36, L24202. [Google Scholar] [CrossRef]
- Le Bars, M.; Wieczorek, M.A.; Karatekin, Ö.; Cébron, D.; Laneuville, M. An impact-driven dynamo for the early Moon. Nature 2011, 479, 215–218. [Google Scholar] [CrossRef]
- Evans, A.J.; Tikoo, S.M. An episodic high-intensity lunar core dynamo. Nat. Astron. 2022, 6, 325–330. [Google Scholar] [CrossRef]
- Baek, S.-M.; Kim, K.-H.; Garrick-Bethell, I.; Jin, H. Magnetic Anomalies within the Crisium Basin: Magnetization Directions, Source Depths, and Ages. J. Geophys. Res. Planets 2019, 124, 223–242. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Meng, L.; Li, L. Fast Magnetization Vector Inversion Method with Undulating Observation Surface in Spherical Coordinate for Revealing Lunar Weak Magnetic Anomaly Feature. Remote Sens. 2024, 16, 432. https://doi.org/10.3390/rs16020432
Ma G, Meng L, Li L. Fast Magnetization Vector Inversion Method with Undulating Observation Surface in Spherical Coordinate for Revealing Lunar Weak Magnetic Anomaly Feature. Remote Sensing. 2024; 16(2):432. https://doi.org/10.3390/rs16020432
Chicago/Turabian StyleMa, Guoqing, Lingwei Meng, and Lili Li. 2024. "Fast Magnetization Vector Inversion Method with Undulating Observation Surface in Spherical Coordinate for Revealing Lunar Weak Magnetic Anomaly Feature" Remote Sensing 16, no. 2: 432. https://doi.org/10.3390/rs16020432
APA StyleMa, G., Meng, L., & Li, L. (2024). Fast Magnetization Vector Inversion Method with Undulating Observation Surface in Spherical Coordinate for Revealing Lunar Weak Magnetic Anomaly Feature. Remote Sensing, 16(2), 432. https://doi.org/10.3390/rs16020432