Combined Drought Index Using High-Resolution Hydrological Models and Explainable Artificial Intelligence Techniques in Türkiye
Abstract
:1. Introduction
- Does adding NDWI and GPP values improve CDI calculations?
- How successful is the developed CDI in detecting agricultural drought?
- What are the relationships between CDI, formed by different combinations of single drought index indicators, and crop yield?
- What is the nonlinear behavior of each input on the output?
2. Materials
2.1. Study Area
2.2. Data Description
3. Methods
3.1. Calculations of Drought Indices
3.1.1. The Precipitation Condition Index
3.1.2. The Temperature Condition Index
3.1.3. The Vegetation Condition Index
3.1.4. The Soil Moisture Condition Index
3.1.5. The Normalized Difference Water Index
3.1.6. The Gross Primary Productivity
3.2. Mesoscale Hydrological Model
3.3. Crop Yield Detrending
3.4. Benchmarking Methods
3.4.1. Standardized Precipitation Evapotranspiration Index
3.4.2. Self-Calibrated Palmer Drought Severity Index
3.5. eXtreme Gradient Boosting
3.6. SHapley Additive exPlanations
3.7. Principal Component Analysis
3.8. Model Evaluation Metrics
3.9. Drought Classification
4. Model Development
5. Results and Discussion
5.1. Machine Learning Results
5.2. Weight Obtained by SHAP
5.3. Weight Obtained by PCA
5.4. Crop Yield Correlation Results Obtained by Three Different Methods
5.5. Spatiotemporal Distribution of Drought Indices
5.6. Long-Term Evolution of Drought Indices
5.7. In-Depth Analysis of Feature Importance and Dependencies
5.8. Future Directions, Recommendations, and Practical Applications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Başakın, E.E.; Ekmekcioğlu, Ö.; Özger, M. Drought Prediction Using Hybrid Soft-Computing Methods for Semi-Arid Region. Model. Earth Syst. Environ. 2021, 7, 2363–2371. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European Seasonal Trends and Recent Changes of Drought Frequency and Severity. Glob. Planet. Change 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of Climate Variability and Drought on Surface Water Resources in Sub-Saharan Africa Using Remote Sensing: A Review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Kumari, P.; Rehana, S.; Singh, S.K.; Inayathulla, M. Development of a New Agro-Meteorological Drought Index (SPAEI-Agro) in a Data-Scarce Region. Hydrol. Sci. J. 2023, 68, 1301–1322. [Google Scholar] [CrossRef]
- Hasan, H.H.; Mohd Razali, S.F.; Muhammad, N.S.; Ahmad, A. Research Trends of Hydrological Drought: A Systematic Review. Water 2019, 11, 2252. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; He, H.; Wu, Z.; Lu, G.; Liao, T. Agricultural Drought Monitoring Using an Enhanced Soil Water Deficit Index Derived from Remote Sensing and Model Data Merging. Remote Sens. 2024, 16, 2156. [Google Scholar] [CrossRef]
- Pathak, A.A.; Dodamani, B.M. Connection between Meteorological and Groundwater Drought with Copula-Based Bivariate Frequency Analysis. J. Hydrol. Eng. 2021, 26, 05021015. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Raposo, V.D.M.B.; Costa, V.A.F.; Rodrigues, A.F. A Review of Recent Developments on Drought Characterization, Propagation, and Influential Factors. Sci. Total Environ. 2023, 898, 165550. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Huang, S.; Zhou, Z.; Shi, H. Bivariate Assessment of Socioeconomic Drought Events Based on an Improved Socioeconomic Drought Index. J. Hydrol. 2023, 623, 129878. [Google Scholar] [CrossRef]
- Raza, A.; Hussain, I.; Ali, Z.; Faisal, M.; Elashkar, E.E.; Shoukry, A.M.; Al-Deek, F.F.; Gani, S. A Seasonally Blended and Regionally Integrated Drought Index Using Bayesian Network Theory. Meteorol. Appl. 2021, 28, e1992. [Google Scholar] [CrossRef]
- Tu, X.; Wu, H.; Singh, V.P.; Chen, X.; Lin, K.; Xie, Y. Multivariate Design of Socioeconomic Drought and Impact of Water Reservoirs. J. Hydrol. 2018, 566, 192–204. [Google Scholar] [CrossRef]
- Li, L.; Peng, Q.; Wang, M.; Cao, Y.; Gu, X.; Cai, H. Quantitative Analysis of Vegetation Drought Propagation Process and Uncertainty in the Yellow River Basin. Agric. Water Manag. 2024, 295, 108775. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased Economic Drought Impacts in Europe with Anthropogenic Warming. Nat. Clim. Change 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Zhang, M.; Fernández-Torres, M.-Á.; Camps-Valls, G. Domain Knowledge-Driven Variational Recurrent Networks for Drought Monitoring. Remote Sens. Environ. 2024, 311, 114252. [Google Scholar] [CrossRef]
- Cavus, Y.; Stahl, K.; Aksoy, H. Drought Intensity–Duration–Frequency Curves Based on Deficit in Precipitation and Streamflow for Water Resources Management. Hydrol. Earth Syst. Sci. 2023, 27, 3427–3445. [Google Scholar] [CrossRef]
- Han, J.; Singh, V.P. A Review of Widely Used Drought Indices and the Challenges of Drought Assessment under Climate Change. Environ. Monit. Assess. 2023, 195, 1438. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales; American Meteorological Society: Anaheim, CA, USA, 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Office of Climatology Research Paper 45; Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Bergman, K.H.; Sabol, P.; Miskus, D. Experimental Indices for Monitoring Global Drought Conditions; United States Department of Commerce: Cambridge, MA, USA, 1988. [Google Scholar]
- Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a Drought Index Incorporating Evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Hobbins, M.T.; Wood, A.; McEvoy, D.J.; Huntington, J.L.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeorol. 2016, 17, 1745–1761. [Google Scholar] [CrossRef]
- Byun, H.-R.; Wilhite, D.A. Objective Quantification of Drought Severity and Duration. J. Clim. 1999, 12, 2747–2756. [Google Scholar] [CrossRef]
- Gunda, T.; Hornberger, G.M.; Gilligan, J.M. Spatiotemporal Patterns of Agricultural Drought in Sri Lanka: 1881–2010. Int. J. Climatol. 2016, 36, 563–575. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Yin, L.; Zhao, Q. A Novel Composite Drought Index Combining Precipitation, Temperature and Evapotranspiration Used for Drought Monitoring in the Huang-Huai-Hai Plain. Agric. Water Manag. 2024, 291, 108626. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of Drought: Progress, Challenges and Opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Hanadé Houmma, I.; Gadal, S.; El Mansouri, L.; Garba, M.; Gbetkom, P.G.; Mamane Barkawi, M.B.; Hadria, R. A New Multivariate Agricultural Drought Composite Index Based on Random Forest Algorithm and Remote Sensing Data Developed for Sahelian Agrosystems. Geomat. Nat. Hazards Risk 2023, 14, 2223384. [Google Scholar] [CrossRef]
- Kogan, F.N. Operational Space Technology for Global Vegetation Assessment. Bull. Am. Meteorol. Soc. 2001, 82, 1949–1964. [Google Scholar] [CrossRef]
- Danodia, A.; Kushwaha, A.; Patel, N.R. Remote Sensing-Derived Combined Index for Agricultural Drought Assessment of Rabi Pulse Crops in Bundelkhand Region, India. Environ. Dev. Sustain. 2021, 23, 15432–15449. [Google Scholar] [CrossRef]
- Karimi, M.; Shahedi, K.; Raziei, T.; Miryaghoubzadeh, M. Meteorological and Agricultural Drought Monitoring in Southwest of Iran Using a Remote Sensing-Based Combined Drought Index. Stoch. Environ. Res. Risk Assess. 2022, 36, 3707–3724. [Google Scholar] [CrossRef]
- Wei, W.; Yan, P.; Zhou, L.; Zhang, H.; Xie, B.; Zhou, J. A Comprehensive Drought Index Based on Spatial Principal Component Analysis and Its Application in Northern China. Environ. Monit. Assess. 2024, 196, 193. [Google Scholar] [CrossRef]
- Shashikant, V.; Mohamed Shariff, A.R.; Wayayok, A.; Kamal, M.R.; Lee, Y.P.; Takeuchi, W. Utilizing TVDI and NDWI to Classify Severity of Agricultural Drought in Chuping, Malaysia. Agronomy 2021, 11, 1243. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Chen, Y.; Yang, J.; Wu, D.; Ma, Y.; Huo, Z.; Liu, S. Daily Dynamic Thresholds of Different Agricultural Drought Grades for Summer Maize Based on the Vegetation Water Index. J. Hydrol. 2023, 625, 130070. [Google Scholar] [CrossRef]
- Patil, P.P.; Jagtap, M.P.; Khatri, N.; Madan, H.; Vadduri, A.A.; Patodia, T. Exploration and Advancement of NDDI Leveraging NDVI and NDWI in Indian Semi-Arid Regions: A Remote Sensing-Based Study. Case Stud. Chem. Environ. Eng. 2024, 9, 100573. [Google Scholar] [CrossRef]
- Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of Phenological Dates in Boreal Regions Using Normalized Difference Water Index. Remote Sens. Environ. 2005, 97, 26–38. [Google Scholar] [CrossRef]
- Olmos-Trujillo, E.; González-Trinidad, J.; Júnez-Ferreira, H.; Pacheco-Guerrero, A.; Bautista-Capetillo, C.; Avila-Sandoval, C.; Galván-Tejada, E. Spatio-Temporal Response of Vegetation Indices to Rainfall and Temperature in A Semiarid Region. Sustainability 2020, 12, 1939. [Google Scholar] [CrossRef]
- Başakın, E.E.; Stoy, P.C.; Demirel, M.C.; Pham, Q.B. Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment. Remote Sens. 2024, 16, 1994. [Google Scholar] [CrossRef]
- Yang, P.; Zhai, X.; Huang, H.; Zhang, Y.; Zhu, Y.; Shi, X.; Zhou, L.; Fu, C. Association and Driving Factors of Meteorological Drought and Agricultural Drought in Ningxia, Northwest China. Atmos. Res. 2023, 289, 106753. [Google Scholar] [CrossRef]
- Wei, X.; He, W.; Zhou, Y.; Cheng, N.; Xiao, J.; Bi, W.; Liu, Y.; Sun, S.; Ju, W. Increased Sensitivity of Global Vegetation Productivity to Drought Over the Recent Three Decades. JGR Atmos. 2023, 128, e2022JD037504. [Google Scholar] [CrossRef]
- Zhang, R.; E, X.; Ma, Z.; An, Y.; Bao, Q.; Wu, Z.; Wu, L.; Sun, Z. Drought Sensitivity and Vulnerability of Rubber Plantation GPP—Insights from Flux Site-Based Simulation. Land 2024, 13, 745. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.W.; Gallant, A.J.E.; Hoerling, M.; Hoffmann, D.; et al. Flash Droughts Present a New Challenge for Subseasonal-to-Seasonal Prediction. Nat. Clim. Change 2020, 10, 191–199. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying Drought Phenomena in the Continental United States in 2011 and 2012 Using Various Drought Indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Parthsarthi Pandya, N.K.; Gontia, H.V. Parmar Development of PCA-Based Composite Drought Index for Agricultural Drought Assessment Using Remote-Sensing. J. Agrometeorol. 2022, 24, 384–392. [Google Scholar] [CrossRef]
- Arab, S.T.; Noguchi, R.; Ahamed, T. Yield Loss Assessment of Grapes Using Composite Drought Index Derived from Landsat OLI and TIRS Datasets. Remote Sens. Appl. Soc. Environ. 2022, 26, 100727. [Google Scholar] [CrossRef]
- Tang, X.; Feng, Y.; Gao, C.; Lei, Z.; Chen, S.; Wang, R.; Jin, Y.; Tong, X. Entropy-Weight-Based Spatiotemporal Drought Assessment Using MODIS Products and Sentinel-1A Images in Urumqi, China. Nat. Hazards 2023, 119, 387–408. [Google Scholar] [CrossRef]
- Waseem, M.; Ajmal, M.; Kim, T.-W. Development of a New Composite Drought Index for Multivariate Drought Assessment. J. Hydrol. 2015, 527, 30–37. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, D.; Wang, H.; Xu, Z.; Wang, G.; Yang, H. Assessment of Agricultural Drought Based on Multi-Source Remote Sensing Data in a Major Grain Producing Area of Northwest China. Agric. Water Manag. 2023, 278, 108142. [Google Scholar] [CrossRef]
- Shi, X.; Ding, H.; Wu, M.; Shi, M.; Chen, F.; Li, Y.; Yang, Y. A Comprehensive Drought Monitoring Method Integrating Multi-Source Data. PeerJ 2022, 10, e13560. [Google Scholar] [CrossRef]
- Suo, N.; Xu, C.; Cao, L.; Song, L.; Lei, X. A Copula-Based Parametric Composite Drought Index for Drought Monitoring and Applicability in Arid Central Asia. CATENA 2024, 235, 107624. [Google Scholar] [CrossRef]
- Kanthavel, P.; Saxena, C.K.; Singh, R.K. Integrated Drought Index Based on Vine Copula Modelling. Int. J. Climatol. 2022, 42, 9510–9529. [Google Scholar] [CrossRef]
- Salvia, A.L.; Brandli, L.L.; Leal Filho, W.; Locatelli Kalil, R.M. An Analysis of the Applications of Analytic Hierarchy Process (AHP) for Selection of Energy Efficiency Practices in Public Lighting in a Sample of Brazilian Cities. Energy Policy 2019, 132, 854–864. [Google Scholar] [CrossRef]
- Hanadé Houmma, I.; El Mansouri, L.; Hadria, R.; Emran, A.; Chehbouni, A. Retrospective Analysis and Version Improvement of the Satellite-Based Drought Composite Index. A semi-arid Tensift-Morocco application. Geocarto Int. 2022, 37, 3069–3090. [Google Scholar] [CrossRef]
- Wallace, M.L.; Mentch, L.; Wheeler, B.J.; Tapia, A.L.; Richards, M.; Zhou, S.; Yi, L.; Redline, S.; Buysse, D.J. Use and Misuse of Random Forest Variable Importance Metrics in Medicine: Demonstrations through Incident Stroke Prediction. BMC Med. Res. Methodol. 2023, 23, 144. [Google Scholar] [CrossRef]
- He, Z.; Yang, Y.; Fang, R.; Zhou, S.; Zhao, W.; Bai, Y.; Li, J.; Wang, B. Integration of Shapley Additive Explanations with Random Forest Model for Quantitative Precipitation Estimation of Mesoscale Convective Systems. Front. Environ. Sci. 2023, 10, 1057081. [Google Scholar] [CrossRef]
- Ergün, E.; Demirel, M.C. On the Use of Distributed Hydrologic Model for Filling Large Gaps at Different Parts of the Streamflow Data. Eng. Sci. Technol. Int. J. 2023, 37, 101321. [Google Scholar] [CrossRef]
- Koycegiz, C.; Sen, O.L.; Buyukyildiz, M. An Analysis of Terrestrial Water Storage Changes of a Karstic, Endorheic Basin in Central Anatolia, Turkey. Ecohydrol. Hydrobiol. 2023, 23, 688–702. [Google Scholar] [CrossRef]
- Kececi, H.; Cali, B.; Basar, S. KONYA Tarim Istatistikleri; Konya İl Tarım ve Orman Müdürlüğü: Konya, Turkey, 2021. [Google Scholar]
- Climate Hazards Center. CHIRPSv2.0Climate Hazards Center InfraRed Precipitation with Station (CHIRPSv2.0); Climate Hazards Center - UC Santa Barbara: Santa Barbara, CA, USA, 2015. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Aksu, H.; Akgül, M.A. Performance Evaluation of CHIRPS Satellite Precipitation Estimates over Turkey. Theor. Appl. Clim. 2020, 142, 71–84. [Google Scholar] [CrossRef]
- Aksu, H.; Cavus, Y.; Aksoy, H.; Akgul, M.A.; Turker, S.; Eris, E. Spatiotemporal Analysis of Drought by CHIRPS Precipitation Estimates. Theor. Appl. Clim. 2022, 148, 517–529. [Google Scholar] [CrossRef]
- Orieschnig, C.; Cavus, Y. Spatial Characterization of Drought through CHIRPS and a Station-Based Dataset in the Eastern Mediterranean. Proc. IAHS 2024, 385, 79–84. [Google Scholar] [CrossRef]
- Kim, K.Y.; Haagenson, R.; Kansara, P.; Rajaram, H.; Lakshmi, V. Augmenting Daily MODIS LST with AIRS Surface Temperature Retrievals to Estimate Ground Temperature and Permafrost Extent in High Mountain Asia. Remote Sens. Environ. 2024, 305, 114075. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, H. A New Integrated Index for Drought Stress Monitoring Based on Decomposed Vegetation Response Factors. J. Hydrol. 2023, 618, 129252. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; Novick, K.A.; Chang, Q. A New Station-Enabled Multi-Sensor Integrated Index for Drought Monitoring. J. Hydrol. 2019, 574, 169–180. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Abid, M.; Khan, M.R.; Jiao, W.; Amin, M.; Adnan, S. Assessing Meteorological and Agricultural Drought in Chitral Kabul River Basin Using Multiple Drought Indices. Remote Sens. 2020, 12, 1417. [Google Scholar] [CrossRef]
- Rahman, K.U.; Ejaz, N.; Shang, S.; Balkhair, K.S.; Alghamdi, K.M.; Zaman, K.; Khan, M.A.; Hussain, A. A Robust Integrated Agricultural Drought Index under Climate and Land Use Variations at the Local Scale in Pakistan. Agric. Water Manag. 2024, 295, 108748. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Xiong, J.; He, W.; Yong, Z.; Wang, X. Responses of the Remote Sensing Drought Index with Soil Information to Meteorological and Agricultural Droughts in Southeastern Tibet. Remote Sens. 2022, 14, 6125. [Google Scholar] [CrossRef]
- Demirci, U.; Demirel, M.C. Effect of Dynamic PET Scaling with LAI and Aspect on the Spatial Performance of a Distributed Hydrologic Model. Agronomy 2023, 13, 534. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Kong, D. Global Monthly GPP, ET, Ec, Es and Ei Simulated by PML-V2 with AVHRR Data at a 0.05 Degree Resolution over 1982–2014. 2023. [Google Scholar]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, 2007WR006562. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yang, J.; Zhang, Y.; Jiang, C.; Xiao, X. Performance of Four State-of-the-Art GPP Products (VPM, MOD17, BESS and PML) for Grasslands in Drought Years. Ecol. Inform. 2020, 56, 101052. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of Satellite Leaf Area Index Estimating Evapotranspiration and Gross Assimilation for Australian Ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Naeem, S.; Zhang, Y.; Zhang, X.; Rehman, A.U.; Tang, Z.; Xu, Z.; Li, C.; Azeem, T. Recent Change in Ecosystem Water Use Efficiency in China Mainly Dominated by Vegetation Greening and Increased CO2. Remote Sens. Environ. 2023, 298, 113811. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Tapas, M.R.; Kumar, U.; Mogili, S.; Jayakumar, K.V. Development of Multivariate Integrated Drought Monitoring Index (MIDMI) for Warangal Region of Telangana, India. J. Water Clim. Change 2022, 13, 1612–1630. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Attinger, S. Multiscale Parameter Regionalization of a Grid-based Hydrologic Model at the Mesoscale. Water Resour. Res. 2010, 46, 2008WR007327. [Google Scholar] [CrossRef]
- Kumar, R.; Samaniego, L.; Attinger, S. Implications of Distributed Hydrologic Model Parameterization on Water Fluxes at Multiple Scales and Locations. Water Resour. Res. 2013, 49, 360–379. [Google Scholar] [CrossRef]
- Araneda-Cabrera, R.J.; Bermúdez, M.; Puertas, J. Assessment of the Performance of Drought Indices for Explaining Crop Yield Variability at the National Scale: Methodological Framework and Application to Mozambique. Agric. Water Manag. 2021, 246, 106692. [Google Scholar] [CrossRef]
- Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought Effects on US Maize and Soybean Production: Spatiotemporal Patterns and Historical Changes. Environ. Res. Lett. 2016, 11, 094021. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Song, X.; Gao, P.; Wan, S.; Shi, L.; Wang, X. Spatiotemporal Characteristics of Winter Wheat Waterlogging in the Middle and Lower Reaches of the Yangtze River, China. Adv. Meteorol. 2018, 2018, 3542103. [Google Scholar] [CrossRef]
- Lischeid, G.; Webber, H.; Sommer, M.; Nendel, C.; Ewert, F. Machine Learning in Crop Yield Modelling: A Powerful Tool, but No Surrogate for Science. Agric. For. Meteorol. 2022, 312, 108698. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Li, Y.; Ye, T.; Chen, S.; Liu, Y. Heterogeneous Impacts of Excessive Wetness on Maize Yields in China: Evidence from Statistical Yields and Process-Based Crop Models. Agric. For. Meteorol. 2022, 327, 109205. [Google Scholar] [CrossRef]
- Başakın, E.E. Comments on “Groundwater Quality Modeling Using a Novel Hybrid Data-Intelligence Model Based on Gray Wolf Optimization Algorithm and Multi-Layer Perceptron Artificial Neural Network: A Case Study in Asadabad Plain, Hamedan, Iran” Cheraghi, Mehrdad et al. (10.1007/S11356-021–16300-4). Environ. Sci. Pollut. Res. 2022, 29, 41869–41871. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Gao, P. Detrending Crop Yield Data for Spatial Visualization of Drought Impacts in the United States, 1895–2014. Agric. For. Meteorol. 2017, 237–238, 196–208. [Google Scholar] [CrossRef]
- Laimighofer, J.; Laaha, G. How Standard Are Standardized Drought Indices? Uncertainty Components for the SPI & SPEI Case. J. Hydrol. 2022, 613, 128385. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Beguería, S. Sbegueria/SPEIbase: Version 2.7; DIGITAL.CSIC: Madrid, Spain, 2022. [Google Scholar]
- Shen, Z.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.; Yu, H. Agricultural Drought Monitoring across Inner Mongolia, China: Model Development, Spatiotemporal Patterns and Impacts. J. Hydrol. 2019, 571, 793–804. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Van Der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based Global Data Set of Dry and Wet Spells for 1901–2009. JGR Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Zhang, Y.; Bu, J.; Zuo, X.; Yu, K.; Wang, Q.; Huang, W. Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods. Remote Sens. 2024, 16, 2793. [Google Scholar] [CrossRef]
- Gupta, A.; Gowda, S.; Tiwari, A.; Gupta, A.K. XGBoost-SHAP Framework for Asphalt Pavement Condition Evaluation. Constr. Build. Mater. 2024, 426, 136182. [Google Scholar] [CrossRef]
- Bushenkova, A.; Soares, P.M.M.; Johannsen, F.; Lima, D.C.A. Towards an Improved Representation of the Urban Heat Island Effect: A Multi-Scale Application of XGBoost for Madrid. Urban Clim. 2024, 55, 101982. [Google Scholar] [CrossRef]
- Mandal, J.; Chatterjee, C.; Das, S. An Explainable Machine Learning Technique to Forecast Lightning Density over North-Eastern India. J. Atmos. Sol. Terr. Phys. 2024, 259, 106255. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for N-Person Games. In Contributions to the Theory of Games (AM-28); Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; Volume 2, pp. 307–318. ISBN 978-1-4008-8197-0. [Google Scholar]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M.; Işık, Z. Exploring the Additional Value of Class Imbalance Distributions on Interpretable Flash Flood Susceptibility Prediction in the Black Warrior River Basin, Alabama, United States. J. Hydrol. 2022, 610, 127877. [Google Scholar] [CrossRef]
- Koc, K. Role of Shapley Additive Explanations and Resampling Algorithms for Contract Failure Prediction of Public–Private Partnership Projects. J. Manag. Eng. 2023, 39, 04023031. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Xiong, J.; Sun, M.; Wang, J. Risk Assessment for Cropland Abandonment in Mountainous Area Based on AHP and PCA—Take Yunnan Province in China as an Example. Ecol. Indic. 2024, 158, 111287. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, X.; Li, C.; Xu, Y.; Fei, J. Compound Ecological Drought Assessment of China Using a Copula-Based Drought Index. Ecol. Indic. 2024, 164, 112141. [Google Scholar] [CrossRef]
- Nigatu, Z.M.; Fan, D.; You, W.; Melesse, A.M. Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin. Remote Sens. 2021, 13, 651. [Google Scholar] [CrossRef]
- Gavrilov, M.B.; Radaković, M.G.; Sipos, G.; Mezősi, G.; Gavrilov, G.; Lukić, T.; Basarin, B.; Benyhe, B.; Fiala, K.; Kozák, P.; et al. Aridity in the Central and Southern Pannonian Basin. Atmosphere 2020, 11, 1269. [Google Scholar] [CrossRef]
- Raphael, M.W.; Benedict, M.M.; James, M.R. Analysis of Spatial and Temporal Drought Variability in a Tropical River Basin Using Palmer Drought Severity Index (PDSI). Int. J. Water Res. Environ. Eng. 2017, 9, 178–190. [Google Scholar] [CrossRef]
- Chang, W.; Li, W.; Ma, H.; Wang, D.; Bandala, E.R.; Yu, Y.; Rodrigo-Comino, J. An Integrated Approach for Shaping Drought Characteristics at the Watershed Scale. J. Hydrol. 2022, 604, 127248. [Google Scholar] [CrossRef]
- Abrar Faiz, M.; Zhang, Y.; Tian, X.; Tian, J.; Zhang, X.; Ma, N.; Aryal, S. Drought Index Revisited to Assess Its Response to Vegetation in Different Agro-Climatic Zones. J. Hydrol. 2022, 614, 128543. [Google Scholar] [CrossRef]
- Tuvdendorj, B.; Wu, B.; Zeng, H.; Batdelger, G.; Nanzad, L. Determination of Appropriate Remote Sensing Indices for Spring Wheat Yield Estimation in Mongolia. Remote Sens. 2019, 11, 2568. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A Climatological Study of Evapotranspiration and Moisture Stress across the Continental United States Based on Thermal Remote Sensing: 1. Model Formulation. J. Geophys. Res. 2007, 112, 2006JD007506. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A Climatological Study of Evapotranspiration and Moisture Stress across the Continental United States Based on Thermal Remote Sensing: 2. Surface Moisture Climatology. J. Geophys. Res. 2007, 112, 2006JD007507. [Google Scholar] [CrossRef]
- Sharma, A. Nexus of Drought, Relief Finances, and Economic Growth: Evidence from Indian States. Nat. Hazards Rev. 2024, 25, 04024033. [Google Scholar] [CrossRef]
- Orimoloye, I.R. Agricultural Drought and Its Potential Impacts: Enabling Decision-Support for Food Security in Vulnerable Regions. Front. Sustain. Food Syst. 2022, 6, 838824. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteor. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Temporal Resolution | Time Range | Sources | Product Name |
---|---|---|---|---|---|
Rainfall | 0.25 degree | Monthly | 1 January 2000–30 December 2021 | CHIRPS | CHIRPS-2.0 |
LST | 1000 m | Daily | 1 February 2000–30 December 2021 | MODIS | MOD11A1 |
NDVI | 1000 m | Monthly | 1 February 2000–30 December 2021 | MODIS | MOD13A3 |
NDWI | 0.05 degree | Daily | 24 February 2000–30 December 2021 | MODIS | MOD09GA v061 |
GPP | 0.05 degree | Monthly | 1 March 2000–30 December 2021 | MODIS and GLDAS | PML_V2 0.1.7 |
Land Cover | 30 m | - | 2020 | GLAD | |
Crop Yield | District Based | Annual | 2001–2020 | TUIK | |
Soil Moisture | 500 m | Monthly | 1 January 2000–30 December 2021 | mHM |
CDI and SPEI | Class | scPDSI | Class |
---|---|---|---|
Extreme Drought | Extreme Drought | ||
−1.5 to −1.99 | Severe Drought | −3 to −3.99 | Severe Drought |
−1 to −1.49 | Moderate Drought | −2 to −2.99 | Moderate Drought |
−0.5 to −0.99 | Mild Drought | −1 to −1.99 | Mild Drought |
−0.49 to −0.49 | Near Normal | −0.5 to −0.99 | Incipient Drought |
0.5–0.99 | Slightly Wet | 0.49 to −0.49 | Near Normal |
1–1.49 | Moderately Wet | 0.5–0.99 | Incipient Wet |
1.5–1.99 | Severely Wet | 1–1.99 | Slightly Wet |
Extremely Wet | 2–2.99 | Moderately Wet | |
3–3.99 | Very Wet | ||
Extremely Wet |
District | SHAP | PCA | Empirical | District | SHAP | PCA | Empirical |
---|---|---|---|---|---|---|---|
Agacoren | 0.008 | −0.039 | −0.011 | Guneysinir | 0.182 | 0.120 | 0.080 |
Akoren | 0.439 * | 0.417 * | 0.438 * | Guzelyurt | 0.340 | −0.056 | 0.036 |
Aksaray_Merkez | 0.681 * | 0.636 * | 0.644 * | Huyuk | 0.689 * | 0.723 * | 0.708 * |
Aksehir | 0.583 * | 0.319 | 0.389 * | Ilgin | 0.794 * | 0.759 * | 0.705 * |
Altinekin | 0.547 * | 0.353 | 0.347 | Kadinhani | 0.829 * | 0.752 * | 0.740 * |
Altunhisar | 0.738 * | 0.719 * | 0.716 * | Karaman_Merkez | 0.729 * | 0.549 * | 0.556 * |
Ayranci | 0.269 | 0.008 | 0.008 | Karapinar | 0.635 * | 0.453 * | 0.454 * |
Beysehir | 0.623 * | 0.591 * | 0.614 * | Karatay | 0.571 * | 0.445 * | 0.468 * |
Bor | 0.644 * | 0.574 * | 0.565 * | Kulu | 0.331 | 0.402 | 0.430 * |
Camardi | 0.504 * | 0.320 | 0.305 | Meram | 0.456 * | 0.365 | 0.385 |
Celtik | 0.701 * | 0.487 * | 0.493 * | Nigde_Merkez | 0.547 * | 0.438 * | 0.441 * |
Ciftlik | 0.408 | 0.475 * | 0.483 * | Ortakoy | 0.565 * | 0.444 * | 0.516 * |
Cihanbeyli | 0.762 * | 0.689 * | 0.692 * | Sarayonu | 0.377 | 0.311 | 0.287 |
Cumra | 0.558 * | 0.498 * | 0.480 * | Sarıyahsi | 0.600 * | 0.580 * | 0.538 * |
Derbent | 0.573 * | 0.304 | 0.367 | Selcuklu | 0.665 * | 0.603 * | 0.576 * |
Doganhisar | 0.520 * | 0.477 * | 0.417 * | Seydisehir | 0.002 | −0.110 | −0.114 |
Emirgazi | 0.800 * | 0.701 * | 0.713 * | Tuzlukcu | 0.558 * | 0.505 * | 0.550 * |
Eregli | 0.254 | 0.155 | 0.167 | Ulukisla | 0.672 * | 0.592 * | 0.618 * |
Eskil | 0.505 * | 0.268 | 0.332 | Yalihuyuk | 0.128 | 0.075 | 0.180 |
Gulagac | 0.735 * | 0.600 * | 0.662 * | Yunak | 0.641 * | 0.639 * | 0.627 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Başakın, E.E.; Stoy, P.C.; Demirel, M.C.; Ozdogan, M.; Otkin, J.A. Combined Drought Index Using High-Resolution Hydrological Models and Explainable Artificial Intelligence Techniques in Türkiye. Remote Sens. 2024, 16, 3799. https://doi.org/10.3390/rs16203799
Başakın EE, Stoy PC, Demirel MC, Ozdogan M, Otkin JA. Combined Drought Index Using High-Resolution Hydrological Models and Explainable Artificial Intelligence Techniques in Türkiye. Remote Sensing. 2024; 16(20):3799. https://doi.org/10.3390/rs16203799
Chicago/Turabian StyleBaşakın, Eyyup Ensar, Paul C. Stoy, Mehmet Cüneyd Demirel, Mutlu Ozdogan, and Jason A. Otkin. 2024. "Combined Drought Index Using High-Resolution Hydrological Models and Explainable Artificial Intelligence Techniques in Türkiye" Remote Sensing 16, no. 20: 3799. https://doi.org/10.3390/rs16203799
APA StyleBaşakın, E. E., Stoy, P. C., Demirel, M. C., Ozdogan, M., & Otkin, J. A. (2024). Combined Drought Index Using High-Resolution Hydrological Models and Explainable Artificial Intelligence Techniques in Türkiye. Remote Sensing, 16(20), 3799. https://doi.org/10.3390/rs16203799