Quantifying Night Sky Brightness as a Stressor for Coastal Ecosystems in Moreton Bay, Queensland
Abstract
:1. Introduction
- Examine differences in sky brightness between urban and undeveloped coastal habitats between the Australian mainland and islands within Moreton Bay;
- Compare the sky brightness between the landward horizon and the seaward horizon;
- Complement three remote sensing techniques, including satellite imagery, hemispheric photographs and ground photometers, allowing a comprehensive study of light pollution.
2. Materials and Methods
2.1. Study Locations
2.2. Field Work
2.2.1. Night Light Measurement Equipment
2.2.2. Sampling Sites
2.2.3. Sampling Sessions of the Camera
2.2.4. Image Processing and Analysis
2.3. Spatial Analysis
2.4. Statistical Analysis
3. Results
3.1. Night Sky Brightness Measurements
3.2. Statistical Correlations
3.3. LANcube Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M. Coastal Light Pollution and Marine Turtles: Assessing the Magnitude of the Problem. Endang. Species. Res. 2012, 19, 85–98. [Google Scholar] [CrossRef]
- Marangoni, L.F.B.; Davies, T.; Smyth, T.; Rodríguez, A.; Hamann, M.; Duarte, C.; Pendoley, K.; Berge, J.; Maggi, E.; Levy, O. Impacts of Artificial Light at Night in Marine Ecosystems—A Review. Glob. Chang Biol. 2022, 28, 5346–5367. [Google Scholar] [CrossRef] [PubMed]
- Allan, H.; Levin, N.; Kark, S. Quantifying and Mapping the Human Footprint across Earth’s Coastal Areas. Ocean Coast. Manag. 2023, 236, 106476. [Google Scholar] [CrossRef]
- Verheijen, F.J. Photopollution: Artificial Light Optic Spatial Control Systems Fail to Cope with. Incidents, Causation, Remedies. Exp. Biol. 1985, 44, 1–18. [Google Scholar] [PubMed]
- Yen, C.-H.; Chan, Y.-T.; Peng, Y.-C.; Chang, K.-H.; Cheng, I.-J. The Effect of Light Pollution on the Sea Finding Behavior of Green Turtle Hatchlings on Lanyu Island, Taiwan. Zool. Stud. 2023. [Google Scholar] [CrossRef]
- Adams, C.A.; Fernández-Juricic, E.; Bayne, E.M.; St. Clair, C.C. Effects of Artificial Light on Bird Movement and Distribution: A Systematic Map. Environ. Evid. 2021, 10, 37. [Google Scholar] [CrossRef]
- Jechow, A.; Kyba, C.C.M.; Hölker, F. Mapping the Brightness and Color of Urban to Rural Skyglow with All-Sky Photometry. J. Quant. Spectrosc. Radiat. Transf. 2020, 250, 106988. [Google Scholar] [CrossRef]
- Vaz, S.; Manes, S.; Gama-Maia, D.; Silveira, L.; Mattos, G.; Paiva, P.C.; Figueiredo, M.; Lorini, M.L. Light Pollution Is the Fastest Growing Potential Threat to Firefly Conservation in the Atlantic Forest Hotspot. Insect Conserv. Divers. 2021, 14, 211–224. [Google Scholar] [CrossRef]
- Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. Coastal Urban Lighting Has Ecological Consequences for Multiple Trophic Levels under the Sea. Sci. Total Environ. 2017, 576, 1–9. [Google Scholar] [CrossRef]
- Lynn, K.D.; Quijón, P.A. Casting a Light on the Shoreline: The Influence of Light Pollution on Intertidal Settings. Front. Ecol. Evol. 2022, 10, 980776. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The Nature, Extent, and Ecological Implications of Marine Light Pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef]
- Aguilera, M.A.; González, M.G. Urban Infrastructure Expansion and Artificial Light Pollution Degrade Coastal Ecosystems, Increasing Natural-to-Urban Structural Connectivity. Landsc. Urban Plan. 2023, 229, 104609. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J. REVIEW: Reducing the Ecological Consequences of Night-time Light Pollution: Options and Developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef]
- Roiko, A.; Mangoyana, R.B.; McFallan, S.; Carter, R.W.B.; Oliver, J.; Smith, T.F. Socio-Economic Trends and Climate Change Adaptation: The Case of South East Queensland. Australas. J. Environ. Manag. 2012, 19, 35–50. [Google Scholar] [CrossRef]
- McPhee, D.P. Environmental History and Ecology of Moreton Bay; CSIRO Publishing: Clayton, VIC, Australia, 2017; ISBN 978-1-4863-0721-0. [Google Scholar]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The New World Atlas of Artificial Night Sky Brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote Sensing of Night Lights: A Review and an Outlook for the Future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Vandersteen, J.; Kark, S.; Sorrell, K.; Levin, N. Quantifying the Impact of Light Pollution on Sea Turtle Nesting Using Ground-Based Imagery. Remote Sens. 2020, 12, 1785. [Google Scholar] [CrossRef]
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring Night Sky Brightness: Methods and Challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef]
- Li, X.; Levin, N.; Xie, J.; Li, D. Monitoring Hourly Night-Time Light by an Unmanned Aerial Vehicle and Its Implications to Satellite Remote Sensing. Remote Sens. Environ. 2020, 247, 111942. [Google Scholar] [CrossRef]
- Aubé, M.; Simoneau, A.; Kolláth, Z. HABLAN: Multispectral and Multiangular Remote Sensing of Artificial Light at Night from High Altitude Balloons. J. Quant. Spectrosc. Radiat. Transf. 2023, 306, 108606. [Google Scholar] [CrossRef]
- Pendoley, K.; Kamrowski, R.L. Sea-Finding in Marine Turtle Hatchlings: What Is an Appropriate Exclusion Zone to Limit Disruptive Impacts of Industrial Light at Night? J. Nat. Conserv. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Jechow, A.; Kolláth, Z.; Ribas, S.J.; Spoelstra, H.; Hölker, F.; Kyba, C.C.M. Imaging and Mapping the Impact of Clouds on Skyglow with All-Sky Photometry. Sci Rep 2017, 7, 6741. [Google Scholar] [CrossRef]
- Kolláth, Z.; Cool, A.; Jechow, A.; Kolláth, K.; Száz, D.; Tong, K.P. Introducing the Dark Sky Unit for Multi-Spectral Measurement of the Night Sky Quality with Commercial Digital Cameras. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107162. [Google Scholar] [CrossRef]
- Hung, L.-W.; White, J.; Joyce, D.; Anderson, S.J.; Banet, B. Fisheye Night Sky Imager: A Calibrated Tool to Measure Night Sky Brightness. PASP 2024, 136, 085002. [Google Scholar] [CrossRef]
- Kolláth, Z.; Dömény, A. Night Sky Quality Monitoring in Existing and Planned Dark Sky Parks by Digital Cameras. arXiv 2017, arXiv:1705.09594. [Google Scholar] [CrossRef]
- Jechow, A.; Kyba, C.C.M.; Hölker, F. Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging. J. Imaging 2019, 5, 46. [Google Scholar] [CrossRef]
- Kolláth, Z.; Száz, D.; Kolláth, K.; Tong, K.P. Light Pollution Monitoring and Sky Colours. J. Imaging 2020, 6, 104. [Google Scholar] [CrossRef]
- Moreton Bay Quandamooka & Catchment: Past, Present and Future; Tibbetts, I.R.; Rothlisberg, P.C.; Neil, D.T.; Homburg, T.A.; Brewer, D.T.; Arthington, A.H. (Eds.) The Moreton Bay Foundation: Brisbane, Queensland, 2019; ISBN 978-0-648-66900-5. [Google Scholar]
- Aubé, M.; Marseille, C.; Farkouh, A.; Dufour, A.; Simoneau, A.; Zamorano, J.; Roby, J.; Tapia, C. Mapping the Melatonin Suppression, Star Light and Induced Photosynthesis Indices with the LANcube. Remote Sens. 2020, 12, 3954. [Google Scholar] [CrossRef]
- Verheijen, F.J.; Wildschut, J.T. The Photic Orientation of Hatchling Sea Turtles during Water Finding Behaviour. Neth. J. Sea Res. 1973, 7, 53–67. [Google Scholar] [CrossRef]
- Guo, B.; Hu, D.; Zheng, Q. Potentiality of SDGSAT-1 Glimmer Imagery to Investigate the Spatial Variability in Nighttime Lights. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103313. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Levin, N. Quantifying the Variability of Ground Light Sources and Their Relationships with Spaceborne Observations of Night Lights Using Multidirectional and Multispectral Measurements. Sensors 2023, 23, 8237. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between Satellite Observed Visible-near Infrared Emissions, Population, Economic Activity and Electric Power Consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A Global Analysis of Factors Controlling VIIRS Nighttime Light Levels from Densely Populated Areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying Urban Light Pollution — A Comparison between Field Measurements and EROS-B Imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Barentine, J.C. Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. J. Imaging 2019, 5, 54. [Google Scholar] [CrossRef]
- Duriscoe, D.; Luginbuhl, C.; Elvidge, C. The Relation of Outdoor Lighting Characteristics to Sky Glow from Distant Cities. Light. Res. Technol. 2014, 46, 35–49. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Hölker, F. Do Artificially Illuminated Skies Affect Biodiversity in Nocturnal Landscapes? Landsc. Ecol 2013, 28, 1637–1640. [Google Scholar] [CrossRef]
- Barry, K.; Suliman, S. Imagining Multispecies Mobility Justice. Aust. Geogr. 2023, 54, 561–571. [Google Scholar] [CrossRef]
- Burt, C.S.; Kelly, J.F.; Trankina, G.E.; Silva, C.L.; Khalighifar, A.; Jenkins-Smith, H.C.; Fox, A.S.; Fristrup, K.M.; Horton, K.G. The Effects of Light Pollution on Migratory Animal Behavior. Trends Ecol. Evol. 2023, 38, 355–368. [Google Scholar] [CrossRef]
- Cabrera-Cruz, S.A.; Smolinsky, J.A.; Buler, J.J. Light Pollution Is Greatest within Migration Passage Areas for Nocturnally-Migrating Birds around the World. Sci. Rep. 2018, 8, 3261. [Google Scholar] [CrossRef]
- Silva, E.; Marco, A.; Da Graça, J.; Pérez, H.; Abella, E.; Patino-Martinez, J.; Martins, S.; Almeida, C. Light Pollution Affects Nesting Behavior of Loggerhead Turtles and Predation Risk of Nests and Hatchlings. J. Photochem. Photobiol. B: Biol. 2017, 173, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. Light Pollution Offshore: Zenithal Sky Glow Measurements in the Mediterranean Coastal Waters. J. Quant. Spectrosc. Radiat. Transf. 2018, 210, 91–100. [Google Scholar] [CrossRef]
- Berry, M.; Booth, D.T.; Limpus, C.J. Artificial Lighting and Disrupted Sea-Finding Behaviour in Hatchling Loggerhead Turtles (Caretta Caretta) on the Woongarra Coast, South-East Queensland, Australia. Aust. J. Zool. 2013, 61, 137. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Lohmann, C.M.F. Orientation and Open-Sea Navigation in Sea Turtles. J. Exp. Biol. 1996, 199, 73–81. [Google Scholar] [CrossRef]
- Limpus, C.; Kamrowski, R.L. Ocean-Finding in Marine Turtles: The Importance of Low Horizon Elevation as an Orientation Cue. Behaviour 2013, 150, 863–893. [Google Scholar] [CrossRef]
- Peregrym, M.; Pénzesné Kónya, E.; Savchenko, M. How Are the Mediterranean Islands Polluted by Artificial Light at Night? Ocean Coast. Manag. 2020, 198, 105365. [Google Scholar] [CrossRef]
- Thums, M.; Whiting, S.D.; Reisser, J.; Pendoley, K.L.; Pattiaratchi, C.B.; Proietti, M.; Hetzel, Y.; Fisher, R.; Meekan, M.G. Artificial Light on Water Attracts Turtle Hatchlings during Their near Shore Transit. R. Soc. Open Sci. 2016, 3, 160142. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Inger, R.; Gaston, K.J. Mapping Artificial Lightscapes for Ecological Studies. Methods Ecol. Evol. 2014, 5, 534–540. [Google Scholar] [CrossRef]
- Verutes, G.M.; Huang, C.; Estrella, R.R.; Loyd, K. Exploring Scenarios of Light Pollution from Coastal Development Reaching Sea Turtle Nesting Beaches near Cabo Pulmo, Mexico. Glob. Ecol. Conserv. 2014, 2, 170–180. [Google Scholar] [CrossRef]
- Kyba, C.; Ruby, A.; Kuechly, H.; Kinzey, B.; Miller, N.; Sanders, J.; Barentine, J.; Kleinodt, R.; Espey, B. Direct Measurement of the Contribution of Street Lighting to Satellite Observations of Nighttime Light Emissions from Urban Areas. Light. Res. Technol. 2021, 53, 189–211. [Google Scholar] [CrossRef]
- Aube, M.; Houle, J.-P. Estimating Lighting Device Inventories with the LANcube v2 Multiangular Radiometer: Estimating Lighting Device Inventories. IJSL 2023, 25, 10–23. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, H.; Zhang, L.; Liang, D.; Zhu, Q.; Liu, X.; Zhou, H.; Liu, Y.; Gou, Y.; Dou, X.; et al. Urban Public Lighting Classification Method and Analysis of Energy and Environmental Effects Based on SDGSAT-1 Glimmer Imager Data. Appl. Energy 2024, 355, 122355. [Google Scholar] [CrossRef]
- Wallner, S. Usage of Vertical Fisheye-Images to Quantify Urban Light Pollution on Small Scales and the Impact of LED Conversion. J. Imaging 2019, 5, 86. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, F.; Dou, C.; Wu, M.; Niu, Z.; Wang, L.; Xu, S. Identification of Illumination Source Types Using Nighttime Light Images from SDGSAT-1. Int. J. Digit. Earth 2024, 17, 2297013. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Inger, R.; De Ibarra, N.H.; Gaston, K.J. Artificial Light Pollution: Are Shifting Spectral Signatures Changing the Balance of Species Interactions? Glob. Change Biol. 2013, 19, 1417–1423. [Google Scholar] [CrossRef]
- Longcore, T.; Rodríguez, A.; Witherington, B.; Penniman, J.F.; Herf, L.; Herf, M. Rapid Assessment of Lamp Spectrum to Quantify Ecological Effects of Light at Night. J. Exp. Zool Pt A 2018, 329, 511–521. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1: Sky brightness 0–20° around zenith | −0.076 | −0.869 *** | −0.868 *** | −0.906 *** | 0.102 | −0.874 *** | −0.949 *** | −0.857 *** | 0.814 *** | 0.824 *** | −0.208 | −0.217 | |
2: % land within 5 km | −0.076 | 0.272 | 0.249 | 0.025 | 0.702 *** | 0.254 | 0.168 | 0.242 | −0.233 | 0.162 | −0.395 | −0.411 * | |
3: % mainland within 5 km | −0.869 *** | 0.272 | 0.985 *** | 0.832 *** | 0.073 | 0.975 *** | 0.904 *** | 0.959 *** | −0.774 *** | −0.676 *** | 0.169 | 0.162 | |
4: % lit SDGSAT pixels within 5 km | −0.868 *** | 0.249 | 0.985 *** | 0.822 *** | 0.102 | 0.968 *** | 0.886 *** | 0.966 *** | −0.773 *** | −0.644 *** | 0.119 | 0.117 | |
5: % lit SDGSAT pixels within 10 km | −0.906 *** | 0.025 | 0.832 *** | 0.822 *** | −0.262 | 0.836 *** | 0.901 *** | 0.794 *** | −0.743 *** | −0.846 *** | 0.313 | 0.320 | |
6: SDGSAT-1 500 m | 0.102 | 0.702 *** | 0.073 | 0.102 | −0.262 | 0.022 | −0.033 | 0.138 | −0.106 | 0.262 | −0.411 * | −0.421 * | |
7: SDGSAT-1 5 km | −0.874 *** | 0.254 | 0.975 *** | 0.968 *** | 0.836 *** | 0.022 | 0.890 *** | 0.941 *** | −0.758 *** | −0.686 *** | 0.181 | 0.179 | |
8: Atlas sky brightness 5 km | −0.949 *** | 0.168 | 0.904 *** | 0.886 *** | 0.901 *** | −0.033 | 0.890 *** | 0.892 *** | −0.750 *** | −0.800 *** | 0.292 | 0.290 | |
9: Population 5 km | −0.857 *** | 0.242 | 0.959 *** | 0.966 *** | 0.794 *** | 0.138 | 0.941 *** | 0.892 *** | −0.748 *** | −0.678 *** | 0.202 | 0.198 | |
10: Sky brightness 60–80° landward | 0.814 *** | −0.233 | −0.774 *** | −0.773 *** | −0.743 *** | −0.106 | −0.758 *** | −0.750 *** | −0.748 *** | 0.699 *** | 0.217 | 0.219 | |
11: Sky brightness 60–80° seaward | 0.824 *** | 0.162 | −0.676 *** | −0.644 *** | −0.846 *** | 0.262 | −0.686 *** | −0.800 *** | −0.678 *** | 0.699 *** | −0.494 * | −0.497 * | |
12: difference in average magnitude 60–80° (land − sea) | −0.208 | −0.395 | 0.169 | 0.119 | 0.313 | −0.411 * | 0.181 | 0.292 | 0.202 | 0.217 | −0.494 * | 0.997 *** | |
13: ratio of magnitudes (land/sea) | −0.217 | −0.411 * | 0.162 | 0.117 | 0.320 | −0.421 * | 0.179 | 0.290 | 0.198 | 0.219 | −0.497 * | 0.997 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, N.; Cooper, R.M.; Kark, S. Quantifying Night Sky Brightness as a Stressor for Coastal Ecosystems in Moreton Bay, Queensland. Remote Sens. 2024, 16, 3828. https://doi.org/10.3390/rs16203828
Levin N, Cooper RM, Kark S. Quantifying Night Sky Brightness as a Stressor for Coastal Ecosystems in Moreton Bay, Queensland. Remote Sensing. 2024; 16(20):3828. https://doi.org/10.3390/rs16203828
Chicago/Turabian StyleLevin, Noam, Rachel Madeleine Cooper, and Salit Kark. 2024. "Quantifying Night Sky Brightness as a Stressor for Coastal Ecosystems in Moreton Bay, Queensland" Remote Sensing 16, no. 20: 3828. https://doi.org/10.3390/rs16203828
APA StyleLevin, N., Cooper, R. M., & Kark, S. (2024). Quantifying Night Sky Brightness as a Stressor for Coastal Ecosystems in Moreton Bay, Queensland. Remote Sensing, 16(20), 3828. https://doi.org/10.3390/rs16203828