Influence of Structure from Motion Algorithm Parameters on Metrics for Individual Tree Detection Accuracy and Precision
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Ecosystem
2.2. Field Data Collection
2.3. UAS Image Acquisitions
2.4. UAS Image Processing
2.4.1. Agisoft Metashape
2.4.2. Pix4Dmapper
2.4.3. OpenDroneMap
2.4.4. Alignment of Software Parameters
2.5. UAS Point Cloud Processing
2.5.1. Height Normalization and CHM Generation
2.5.2. Tree Detection and DBH Modeling
2.6. Individual Tree Measurement Comparison
2.7. Statistical Analysis
3. Results
3.1. Point Cloud Comparison
3.2. Overall Tree Detection Performance (F-Score)
3.2.1. Dense Point Cloud Generation Quality Setting
3.2.2. Dense Point Cloud Filtering Mode Setting
3.2.3. Software
3.3. Stand Basal Area
3.3.1. Dense Point Cloud Generation Quality Setting
3.3.2. Dense Point Cloud Filtering Mode Setting
3.3.3. Software
4. Discussion
4.1. Variation in Algorithm Performance
4.2. Interaction of Data Quality with Processing Time and Data Storage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dainelli, R.; Toscano, P.; Filippo Di Gennaro, S.; Matese, A. Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing—A Systematic Review. Part I A Gen. Framework. Remote Sens. 2021, 12, 327. [Google Scholar]
- Jeronimo, S.M.A.; Kane, V.R.; Churchill, D.J.; McGaughey, R.J.; Franklin, J.F. Applying LiDAR Individual Tree Detection to Management of Structurally Diverse Forest Landscapes. J. For. 2018, 116, 336–346. [Google Scholar] [CrossRef]
- Creasy, M.B.; Tinkham, W.T.; Hoffman, C.M.; Vogeler, J.C. Potential for individual tree monitoring in ponderosa pine-dominated forests using unmanned aerial system structure from motion point clouds. Can. J. For. Res. 2021, 51, 1093–1105. [Google Scholar] [CrossRef]
- Freudenberg, M.; Magdon, P.; Nölke, N. Individual Tree Crown Delineation in High-Resolution Remote Sensing Images Based on U-Net. Neural Comput. Appl. 2022, 34, 22197–22207. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X. Individual tree parameters estimation for plantation forests based on UAV oblique photography. IEEE Access 2020, 8, 96184–96198. [Google Scholar] [CrossRef]
- Fraser, B.; Congalton, R.G. Monitoring fine-scale forest health using unmanned aerial systems (UAS) multispectral models. Remote Sens. 2021, 13, 4873. [Google Scholar] [CrossRef]
- Lad, L.E.; Tinkham, W.T.; Sparks, A.M.; Smith, A.M.S. Predictive Models of Tree Foliar Moisture Content using Multispectral UAS Data: A Laboratory Study. Remote Sens. 2023, 15, 5703. [Google Scholar] [CrossRef]
- Belmonte, A.; Sankey, T.; Biederman, J.A.; Bradford, J.; Goetz, S.J.; Kolb, T.; Woolley, T. UAV-derived estimates of forest structure to inform ponderosa pine forest restoration. Remote Sens. 2020, 6, 181–197. [Google Scholar] [CrossRef]
- Hanna, L.; Tinkham, W.T.; Battaglia, M.A.; Vogler, J.C.; Ritter, S.M.; Hoffman, C.M. Characterizing Heterogeneous Forest Structure in Ponderosa Pine Forests via UAS-Derived Structure from Motion. Environ. Monit. Assess. 2024, 196, 530. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Young, D.J.N.; Koontz, M.J.; Weeks, J.M. Optimizing Aerial Imagery Collection and Processing Parameters for Drone-Based Individual Tree Mapping in Structurally Complex Conifer Forests. Methods Ecol. Evol. 2021, 13, 1447–1463. [Google Scholar] [CrossRef]
- Swayze, N.C.; Tinkham, W.T.; Vogeler, J.C.; Hudak, A.T. Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density. Remote Sens. Environ. 2021, 263, 112540. [Google Scholar] [CrossRef]
- Swayze, N.P.; Tinkham, W.T.; Creasy, M.B.; Vogeler, J.C.; Hudak, A.T.; Hoffman, C.M. Influence of UAS flight altitude and speed on aboveground biomass prediction. Remote Sens. 2022, 14, 1989. [Google Scholar] [CrossRef]
- Pell, T.; Li, J.Y.Q.; Joyce, K.E. Demystifying the differences between structure-from-motion software packages for pre-processing drone data. Drones 2022, 6, 24. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Swayze, N.C. Influence of Agisoft Metashape parameters on individual tree detection using structure from motion canopy height models. Forests 2021, 12, 250. [Google Scholar] [CrossRef]
- Peet, R.K. Forest vegetation of the Colorado Front Range. Plant Ecol. 1981, 45, 3–75. [Google Scholar] [CrossRef]
- Addington, R.N.; Aplet, G.H.; Battaglia, M.A.; Briggs, J.S.; Brown, P.M.; Cheng, A.S.; Dickinson, Y.; Feinstein, J.A.; Pelz, K.A.; Regan, C.M.; et al. Principles and Practices for the Restoration of Ponderosa Pine and Dry Mixed-Conifer Forests of the Colorado Front Range; United Stated Department of Agriculture/Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2018. [Google Scholar]
- Larson, A.J.; Churchill, D.C. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments. For. Econ. Manag. 2012, 267, 74–92. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Dickinson, Y.; Hoffman, C.M.; Battaglia, M.A.; Ex, S.; Underhill, J. Visualization guide to Heterogeneous Forest Structures Following Treatment in the Southern Rocky Mountains; United States Department of Agriculture/Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2017. [Google Scholar]
- Allen, S.R.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Shulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective. Econ. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Southwestern ponderosa forest structure: Changes since Euro-American settlement. J. For. 1994, 92, 39–47. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Econ. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Reynolds, R.T.; Sánchez Meador, A.J.; Youtz, J.A.; Nicolet, T.; Matonis, M.S.; Jackson, P.L.; DeLorenzo, D.G.; Graves, A.D. Restoring Composition and Structure in Southwestern Frequent-Fire Forests: A Science-Based Framework for Improving Ecosystem Resiliency; United States Department of Agriculture/Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2013. [Google Scholar]
- USGS. GAP/LANDFIRE National Terrestrial Ecosystems 2011; Version 3; U.S. Geological Survey, Gap Analysis Program: Boise, ID, USA, 2016. [Google Scholar] [CrossRef]
- Boyden, S.; Binkley, D.; Shepherd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For. Ecol. Manag. 2005, 219, 43–55. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 7 May 2024).
- Roussel, J.R. lasR: Fast and Pipeable Airborne LiDAR Data Tools. R Package Version 0.5.3. 2024. Available online: https://github.com/r-lidar/lasR (accessed on 7 May 2024).
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Roussel, J.; Qi, J. RCSF: Airborne LiDAR Filtering Method Based on Cloth Simulation. R Package Version 1.0.2. 2020. Available online: https://CRAN.R-project.org/package=RCSF (accessed on 7 May 2024).
- St-Onge, B. Methods for improving the quality of a true orthomosaic of Vexcel UltraCam images created using a lidar digital surface model. In Proceedings of the Silvilaser 2008, Edinburgh, UK, 17–19 September 2008; pp. 555–562. [Google Scholar]
- Popescu, S.; Wynne, R. Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef]
- Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Sánchez Meador, A.; Bourdon, J.F.; De Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Mahoney, P.R.; Hudak, A.T.; Domke, G.M.; Falkowski, M.J.; Woodall, C.W.; Smith, A.M.S. Applications of the United States Forest Service Forest Inventory and Analysis dataset: A review and future directions. Can. J. For. Res. 2018, 48, 1251–1268. [Google Scholar] [CrossRef]
- Kane, V.R.; Bartl-Geller, B.N.; Cova, G.R.; Chamberlain, C.P.; van Wagtendonk, L.; North, M.P. Where are the large trees? A census of Sierra Nevada large trees to determine their frequency and spatial distribution across three large landscapes. For. Ecol. Manag. 2023, 546, 121351. [Google Scholar] [CrossRef]
- Swayze, N.C.; Tinkham, W.T. Application of unmanned aerial system structure from motion point cloud detected heights and stem diameters to model missing stem diameters. MethodsX 2022, 9, 101729. [Google Scholar] [CrossRef]
- Paul-Christian, B. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar]
- Hobbs, N.T.; Hooten, M.B. Bayesian Models: A Statistical Primer for Ecologists; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Riley, K.L.; Grenfell, I.C.; Finney, M.A.; Shaw, J.D. TreeMap 2016: A Tree-Level Model of the Forests of the Conterminous United States Circa 2016; Forest Service Research Data Archive: Fort Collins, CO, USA, 2021. [Google Scholar] [CrossRef]
- Kruschke, J.K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Kurz, A.S. Doing Bayesian Data Analysis in BRMS and the Tidyverse [Version 1.1.0]. 2023. Available online: https://bookdown.org/content/3686/ (accessed on 20 July 2024).
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar] [CrossRef]
- Kruschke, J.K. Bayesian analysis reporting guidelines. Nat. Hum. Behav. 2021, 5, 1282–1291. [Google Scholar] [CrossRef]
- Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models. R Package Version 3.0.6. 2023. Available online: https://zenodo.org/records/13770114 (accessed on 8 October 2024).
- Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 2013, 4, 922. [Google Scholar] [CrossRef]
- Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef]
- Tuominen, S.; Balazs, A.; Saari, H.; Pölönen, I.; Sarkeala, J.; Viitala, R. Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables. Silva Fennica 2015, 49, 1348. [Google Scholar] [CrossRef]
- Bonnet, S.; Lisein, J.; Lejeune, P. Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands. Int. J. Remote Sens. 2017, 38, 5310–5337. [Google Scholar] [CrossRef]
- USDA Forest Service. FSVeg Common Stand Exam Users Guide; Chapter 2: Preparation and Design. Version 2.12.6. 2015. Available online: https://www.fs.usda.gov/nrm/fsveg/index.shtml. (accessed on 14 May 2024).
- Fawcett, D.; Azlan, B.; Hill, T.C.; Kho, L.K.; Bennie, J.; Anderson, K. Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation. Int. J. Remote Sens. 2019, 40, 7538–7560. [Google Scholar] [CrossRef]
- Sparks, A.M.; Corrao, M.V.; Keefe, R.F.; Armstrong, R.; Smith, A.M.S. An accuracy assessment of field and airborne laser scanning-derived individual tree inventories using felled tree measurements and log scaling data in a mixed conifer forest. For. Sci. 2024, 70, 228–241. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Swayze, N.C.; Hoffman, C.M.; Lad, L.E.; Battaglia, M.A. Modeling the missing DBHs: Influence of model form on UAV DBH characterization. Forests 2022, 13, 2077. [Google Scholar] [CrossRef]
- Vastaranta, M.; Melkas, T.; Holopainen, M.; Kaartinen, H.; Hyyppa, J.; Hyyppa, H. Laser-based field measurements in tree-level forest data acquisition. Photogramm. J. Finl. 2009, 21, 51–61. [Google Scholar]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehhtari, A.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: London, UK, 2013. [Google Scholar]
Site | Hectares | Trees ha−1 | Basal Area (m2 ha−1) | Height (m) * | DBH (cm) * |
---|---|---|---|---|---|
Kaibab High Density | 1.7 | 574.1 | 39.6 | 12.8 (7.2) | 24.0 (17.4) |
Kaibab Low Density | 2.1 | 246.5 | 22.5 | 12.5 (8.6) | 27.3 (20.5) |
Manitou | 1.6 | 639.5 | 24.8 | 8.5 (7.3) | 15.4 (16.0) |
Black Hills High Density | 1.0 | 308.3 | 11.2 | 11.1 (4.8) | 19.7 (8.8) |
Black Hills Low Density | 1.0 | 171.6 | 14.9 | 15.7 (6.0) | 30.7 (12.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinkham, W.T.; Woolsey, G.A. Influence of Structure from Motion Algorithm Parameters on Metrics for Individual Tree Detection Accuracy and Precision. Remote Sens. 2024, 16, 3844. https://doi.org/10.3390/rs16203844
Tinkham WT, Woolsey GA. Influence of Structure from Motion Algorithm Parameters on Metrics for Individual Tree Detection Accuracy and Precision. Remote Sensing. 2024; 16(20):3844. https://doi.org/10.3390/rs16203844
Chicago/Turabian StyleTinkham, Wade T., and George A. Woolsey. 2024. "Influence of Structure from Motion Algorithm Parameters on Metrics for Individual Tree Detection Accuracy and Precision" Remote Sensing 16, no. 20: 3844. https://doi.org/10.3390/rs16203844
APA StyleTinkham, W. T., & Woolsey, G. A. (2024). Influence of Structure from Motion Algorithm Parameters on Metrics for Individual Tree Detection Accuracy and Precision. Remote Sensing, 16(20), 3844. https://doi.org/10.3390/rs16203844