The Lunar Regolith Thickness and Stratigraphy of the Chang’E-6 Landing Site
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Crater Morphology Method
2.2.2. Crater Excavation Technique
3. Results
3.1. Estimation of Regolith Thickness
3.2. Estimation of Mare Lava Thickness
4. Discussion
4.1. Geological Implications of Lunar Regolith
4.2. Stratigraphy of CE-6 Landing Site
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Peng, M.; Di, K.; Wan, W.; Liu, B.; Wang, Y.; Xie, B.; Kou, Y.; Wang, B.; Chenxu, Z.; et al. High-Precision Visual Localization of the Chang’e-6 Lander. Natl. Remote Sens. Bull. 2024, 28, 1649–1656. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, D.; Chen, Y.; Zhou, Q.; Ren, X.; Zhang, Z.; Yan, W.; Chen, W.; Wang, Q.; Deng, X.; et al. Landing site of the Chang’e-6 lunar farside sample return mission from the Apollo basin. Nat. Astron. 2023, 7, 1188–1197. [Google Scholar] [CrossRef]
- Zhou, C.; Jia, Y.; Liu, J.; Li, H.; Fan, Y.; Zhang, Z.; Liu, Y.; Jiang, Y.; Zhou, B.; He, Z.; et al. Scientific objectives and payloads of the lunar sample return mission—Chang’E-5. Adv. Space Res. 2022, 69, 823–836. [Google Scholar] [CrossRef]
- Jia, Y.; Zou, Y.; Ping, J.; Xue, C.; Yan, J.; Ning, Y. The scientific objectives and payloads of Chang’E−4 mission. Planet. Space Sci. 2018, 162, 207–215. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, B.; Ji, Y.; Zhang, Q.; Shen, S.; Li, Y.; Guan, H.; Tang, C.; Gao, Y.; Lu, W.; et al. Lunar Penetrating Radar onboard the Chang’e-3 mission. Res. Astron. Astrophys. 2014, 14, 1607–1622. [Google Scholar] [CrossRef]
- Baker, D.M.; Head, J.W.; Fassett, C.I.; Kadish, S.J.; Smith, D.E.; Zuber, M.T.; Neumann, G.A. The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument. Icarus 2011, 214, 377–393. [Google Scholar] [CrossRef]
- Qian, Y.; Head, J.; Michalski, J.; Wang, X.; van der Bogert, C.H.; Hiesinger, H.; Sun, L.; Yang, W.; Xiao, L.; Li, X.; et al. Long-lasting farside volcanism in the Apollo basin: Chang’e-6 landing site. Earth Planet. Sci. Lett. 2024, 637, 118737. [Google Scholar] [CrossRef]
- Shearer, C.K.; Hess, P.C.; Wieczorek, M.A.; Pritchard, M.E.; Parmentier, E.M.; Borg, L.E.; Longhi, J.; Elkins-Tanton, L.T.; Neal, C.R.; Antonenko, I.; et al. Thermal and Magmatic Evolution of the Moon. Rev. Mineral. Geochem. 2006, 60, 365–518. [Google Scholar] [CrossRef]
- Taguchi, M.; Morota, T.; Kato, S. Lateral heterogeneity of lunar volcanic activity according to volumes of mare basalts in the farside basins. J. Geophys. Res. Planets 2017, 122, 1505–1521. [Google Scholar] [CrossRef]
- McKay, D.S.; Heiken, G.; Basu, A.; Blanford, G.; Simon, S.; Reedy, R.; French, B.M.; Papike, J. The lunar regolith. Lunar Sourceb. 1991, 567, 285–356. [Google Scholar]
- Shoemaker, E.M. Lunar Regolith at Tranquility Base. AAPG Bull. 1970, 54, 559. [Google Scholar]
- Shoemaker, E.M.; Batson, R.; Holt, H.; Morris, E.; Rennilson, J.; Whitaker, E. Observations of the lunar regolith and the Earth from the television camera on Surveyor 7. J. Geophys. Res. 1969, 74, 6081–6119. [Google Scholar] [CrossRef]
- Yue, Z.; Di, K.; Liu, Z.; Michael, G.; Jia, M.; Xin, X.; Liu, B.; Peng, M.; Liu, J. Lunar regolith thickness deduced from concentric craters in the CE-5 landing area. Icarus 2019, 329, 46–54. [Google Scholar] [CrossRef]
- Thomson, B.J.; Grosfils, E.B.; Bussey, D.B.J.; Spudis, P.D. A new technique for estimating the thickness of mare basalts in Imbrium Basin. Geophys. Res. Lett. 2009, 36, L12201. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Zhang, X.; Li, S.; Xia, X.; Wu, Y. The Thickness and Scale of Late-stage Basalts in Oceanus Procellarum. Acta Astron. Sin. 2018, 59, 14. [Google Scholar]
- fu, X.; Qiao, L.; Zhang, J.; Ling, Z.; Li, B. The subsurface structure and stratigraphy of the Chang’E-4 landing site: Orbital evidence from small craters on the Von Kármán crater floor. Res. Astron. Astrophys. 2020, 20, 8. [Google Scholar] [CrossRef]
- Fa, W.; Liu, T.; Zhu, M.-H.; Haruyama, J. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters. J. Geophys. Res.-Planets 2014, 119, 1914–1935. [Google Scholar] [CrossRef]
- Fa, W.; Liu, T.; Xie, M.; Du, J. Regolith thickness over the Apollo landing sites from morphology of small fresh impact craters. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 1765. [Google Scholar]
- Di, K.; Sun, S.; Yue, Z.; Liu, B. Lunar regolith thickness determination from 3D morphology of small fresh craters. Icarus 2016, 267, 12–23. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ren, X.; Liu, J.; Wu, Y.; Lu, Y.; Cai, W.; Zhang, X. The Thickness and Volume of Young Basalts Within Mare Imbrium. J. Geophys. Res. -Planets 2018, 123, 630–645. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.; Tschimmel, M.e.; Humm, D.; Lawrence, S.; Thomas, P.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M. Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Jackson, G.B.; Cavanaugh, J.F.; Neumann, G.A.; Riris, H.; Sun, X.; Zellar, R.S.; Coltharp, C.; Connelly, J.; et al. The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission. Space Sci. Rev. 2010, 150, 209–241. [Google Scholar] [CrossRef]
- Haruyama, J.; Matsunaga, T.; Ohtake, M.; Morota, T.; Honda, C.; Yokota, Y.; Torii, M.; Ogawa, Y.; LISM Working Group. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 2008, 60, 243–255. [Google Scholar] [CrossRef]
- Lemelin, M.; Lucey, P.; Gaddis, L.; Hare, T.; Ohtake, M. Global map products from the Kaguya multiband imager at 512 ppd: Minerals, FeO, and OMAT. In Proceedings of the 47th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 2994. [Google Scholar]
- Otake, H.; Ohtake, M.; Hirata, N. Lunar iron and titanium abundance algorithms based on SELENE (Kaguya) Multiband Imager data. In Proceedings of the 43rd Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012; p. 1905. [Google Scholar]
- Kneissl, T.; van Gasselt, S.; Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet. Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Oberbeck, V.R.; Quaide, W.L. Genetic Implications of Lunar Regolith Thickness Variations. Icarus 1968, 9, 446–465. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Senthil Kumar, A.; Keerthi, V.; Goswami, J.N.; Gopala Krishna, B.; Kiran Kumar, A.S. Chandrayaan-1 observation of distant secondary craters of Copernicus exhibiting central mound morphology: Evidence for low velocity clustered impacts on the Moon. Planet. Space Sci. 2011, 59, 870–879. [Google Scholar] [CrossRef]
- Schultz, P.H.; Gault, D.E. Clustered impacts: Experiments and implications. J. Geophys. Res. Solid Earth 1985, 90, 3701–3732. [Google Scholar] [CrossRef]
- Melosh, H.J. Impact Cratering: A Geologic Process; Oxford University Press: New York, NY, USA; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Bart, G.D. The quantitative relationship between small impact crater morphology and regolith depth. Icarus 2014, 235, 130–135. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Korotev, R.L. On the Importance of Apollo Regolith Samples for Scientific Exploration of the Moon. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019. [Google Scholar]
- Yue, Z.; Gou, S.; Sun, S.; Yang, W.; Chen, Y.; Wang, Y.; Lin, H.; Di, K.; Lin, Y.; Li, X.; et al. Geological context of the Chang’e-6 landing area and implications for sample analysis. Innovation 2024, 5, 100663. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Chen, J.; Kong, J.; Qiao, L.; Fu, X.; Ling, Z. Geologic context of Chang’e-6 candidate landing regions and potential non-mare materials in the returned samples. Icarus 2024, 416, 116107. [Google Scholar] [CrossRef]
- Shkuratov, Y.G.; Bondarenko, N.V. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus 2001, 149, 329–338. [Google Scholar] [CrossRef]
- Fegley, B.; Swindle, T.D. Lunar volatiles: Implications for lunar resource utilization. In Resources of Near-Earth Space; University of Arizona Press: Tucson, AZ, USA, 1993; Volume 10. [Google Scholar]
- Wilcox, B.B.; Robinson, M.S.; Thomas, P.C.; Hawke, B.R. Constraints on the depth and variability of the lunar regolith. Meteorit. Planet. Sci. 2005, 40, 695–710. [Google Scholar] [CrossRef]
- Bart, G.D.; Nickerson, R.D.; Lawder, M.T.; Melosh, H.J. Global survey of lunar regolith depths from LROC images. Icarus 2011, 215, 485–490. [Google Scholar] [CrossRef]
- Orgel, C.; Torres, I.; Besse, S.; van der Bogert, C.H.; Bahia, R.; Prissang, R.; Ivanov, M.A.; Hiesinger, H.; Michael, G.; Pasckert, J.H.; et al. Characterization of High-priority Landing Sites for Robotic Exploration Missions in the Apollo Basin, Moon. Planet. Sci. J. 2024, 5, 29. [Google Scholar] [CrossRef]
- Fa, W.; Wieczorek, M.A. Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations. Icarus 2012, 218, 771–787. [Google Scholar] [CrossRef]
- Head, J.W.; Wilson, L. Rethinking Lunar Mare Basalt Regolith Formation: New Concepts of Lava Flow Protolith and Evolution of Regolith Thickness and Internal Structure. Geophys. Res. Lett. 2020, 47, e2020GL088334. [Google Scholar] [CrossRef]
- Molaro, J.L.; Byrne, S.; Le, J.L. Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown. Icarus 2017, 294, 247–261. [Google Scholar] [CrossRef]
- Molaro, J.L.; Byrne, S.; Langer, S.A. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown. J. Geophys. Res. Planets 2015, 120, 255–277. [Google Scholar] [CrossRef]
- Delbo, M.; Libourel, G.; Wilkerson, J.; Murdoch, N.; Michel, P.; Ramesh, K.T.; Ganino, C.; Verati, C.; Marchi, S. Thermal fatigue as the origin of regolith on small asteroids. Nature 2014, 508, 233–236. [Google Scholar] [CrossRef]
- Qian, Y.; Xiao, L.; Wang, Q.; Head, J.W.; Yang, R.; Kang, Y.; van der Bogert, C.H.; Hiesinger, H.; Lai, X.; Wang, G.; et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 2021, 561, 116855. [Google Scholar] [CrossRef]
- Li, Q.-L.; Zhou, Q.; Liu, Y.; Xiao, Z.; Lin, Y.; Li, J.-H.; Ma, H.-X.; Tang, G.-Q.; Guo, S.; Tang, X.; et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 2021, 600, 54–58. [Google Scholar] [CrossRef]
- Che, X.; Nemchin, A.; Liu, D.; Long, T.; Wang, C.; Norman, M.D.; Joy, K.H.; Tartese, R.; Head, J.; Jolliff, B.; et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 2021, 374, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Dorman, J.; Duennebier, F.; Lammlein, D.; Latham, G. Shallow lunar structure determined from the passive seismic experiment. Moon 1975, 13, 57–66. [Google Scholar] [CrossRef]
- Cooper, M.R.; Kovach, R.L.; Watkins, J.S. Lunar near-surface structure. Rev. Geophys. 1974, 12, 291–308. [Google Scholar] [CrossRef]
- Atang, E.; Bart, G. Lunar Regolith Depth Vs. Surface Age: New Measurements in the Lunar Maria. LPI Contrib. 2024, 3040, 1549. [Google Scholar]
- Wilhelms, D.E.; McCauley, J.F.; Trask, N.J. The Geologic History of the Moon; USGS: Reston, VA, USA, 1987; p. 1348.
- Spudis, P.D.; Hawke, B.R.; Lucey, P. Composition of orientale basin deposits and implications for the lunar basin-forming process. J. Geophys. Res. Solid Earth 1984, 89, C197–C210. [Google Scholar] [CrossRef]
- Moriarty, D.P., III; Pieters, C.M. The Character of South Pole-Aitken Basin: Patterns of Surface and Subsurface Composition. J. Geophys. Res. Planets 2018, 123, 729–747. [Google Scholar] [CrossRef]
- Hiesinger, H.; van der Bogert, C.H.; Pasckert, J.H.; Schmedemann, N.; Robinson, M.S.; Jolliff, B.; Petro, N. New crater size-frequency distribution measurements of the South Pole-Aitken basin. In Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012; p. 2863. [Google Scholar]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. Planets 2000, 105, 4197–4216. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Liu, B.; Ren, X.; Liu, J.; He, Z.; Zuo, W.; Zeng, X.; Xu, R.; Tan, X. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 2019, 569, 378–382. [Google Scholar] [CrossRef]
- Melosh, H.J.; Kendall, J.; Horgan, B.; Johnson, B.C.; Bowling, T.; Lucey, P.G.; Taylor, G.J. South Pole–Aitken basin ejecta reveal the Moon’s upper mantle. Geology 2017, 45, 1063–1066. [Google Scholar] [CrossRef]
- Vaughan, W.M.; Head, J.W. Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations. Planet. Space Sci. 2014, 91, 101–106. [Google Scholar] [CrossRef]
- Hurwitz, D.M.; Kring, D.A. Differentiation of the South Pole–Aitken basin impact melt sheet: Implications for lunar exploration. J. Geophys. Res. Planets 2014, 119, 1110–1133. [Google Scholar] [CrossRef]
- Potter, R.W.K.; Collins, G.S.; Kiefer, W.S.; McGovern, P.J.; Kring, D.A. Constraining the size of the South Pole-Aitken basin impact. Icarus 2012, 220, 730–743. [Google Scholar] [CrossRef]
- Fassett, C.I.; Head, J.W.; Kadish, S.J.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res. Planets 2012, 117, E00H0. [Google Scholar] [CrossRef]
- Morrison, D. Did a thick South Pole–Aitken Basin melt sheet differentiate to form cumulates? In Proceedings of the 29th Lunar and Planetary Science Conference, Houston, TX, USA, 16–20 March 1998. [Google Scholar]
- Potter, R.W.K.; Head, J.W.; Guo, D.; Liu, J.; Xiao, L. The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole–Aitken basin. Icarus 2018, 306, 139–149. [Google Scholar] [CrossRef]
- Li, C.; Su, Y.; Pettinelli, E.; Xing, S.; Ding, C.; Liu, J.; Ren, X.; Lauro, S.E.; Soldovieri, F.; Zeng, X.; et al. The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar Penetrating Radar. Sci. Adv. 2020, 6, eaay6898. [Google Scholar] [CrossRef]
- Lai, J.; Xu, Y.; Zhang, X.; Tang, Z. Structural analysis of lunar subsurface with Chang’E-3 lunar penetrating radar. Planet. Space Sci. 2016, 120, 96–102. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Fang, G.; Zhou, B.; Shen, S. Performance verification of Lunar Regolith Penetrating Array Radar of Chang’E-5 mission. Adv. Space Res. 2019, 63, 2267–2278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yin, C.; Chi, S.; Mao, W.; Fu, X.; Zhang, J. The Lunar Regolith Thickness and Stratigraphy of the Chang’E-6 Landing Site. Remote Sens. 2024, 16, 3976. https://doi.org/10.3390/rs16213976
Li J, Yin C, Chi S, Mao W, Fu X, Zhang J. The Lunar Regolith Thickness and Stratigraphy of the Chang’E-6 Landing Site. Remote Sensing. 2024; 16(21):3976. https://doi.org/10.3390/rs16213976
Chicago/Turabian StyleLi, Jin, Chengxiang Yin, Siyue Chi, Wenshuo Mao, Xiaohui Fu, and Jiang Zhang. 2024. "The Lunar Regolith Thickness and Stratigraphy of the Chang’E-6 Landing Site" Remote Sensing 16, no. 21: 3976. https://doi.org/10.3390/rs16213976
APA StyleLi, J., Yin, C., Chi, S., Mao, W., Fu, X., & Zhang, J. (2024). The Lunar Regolith Thickness and Stratigraphy of the Chang’E-6 Landing Site. Remote Sensing, 16(21), 3976. https://doi.org/10.3390/rs16213976