A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Grey Wolf Optimization
- (1)
- Social hierarchy
- (2)
- Surround
- (3)
- Hunt
- (4)
- Attack
2.2.2. Variational Mode Decomposition
2.2.3. Long Short-Term Memory
2.2.4. GWO-VMD Model
2.2.5. Construction of a New GVLSTM Model
- (1)
- Obtain the optimal parameter combination [, ] using GWO.
- (2)
- Judge the effective IMF components and noise according to the MPE, and reconstruct the signal.
- (3)
- Input the reconstructed signal into the LSTM model as an eigenvalue for prediction.
- (4)
- Evaluate the accuracy of the prediction results. Figure 5 shows the framework diagram of the GVLSTM prediction model constructed in the study.
2.2.6. Evaluation Index
- (1)
- RMSE
- (2)
- MAE
3. Results
3.1. GWO of VMD Parameter Selection
3.2. Analysis of Prediction Accuracy of GVLSTM Model
4. Discussion
4.1. Quality Analysis of GVLSTM and VMDLSTM Model Prediction Results
4.2. Evaluation of Improvements in Accuracy Indexes for GVLSTM and VMDLSTM Models
5. Conclusions
- (1)
- After the optimization of VMD by GWO, GWO-VMD effectively weakens the influence of modal aliasing and endpoint effects, and the signal characteristics are dynamic; additionally, the key parameters of VMD can be accurately obtained by using envelope entropy as a fitness function [K, ].
- (2)
- The GVLSTM model proposed in this paper has higher prediction accuracy than other models. Compared with the VMDLSTM prediction model, the accuracy of the RMSE value for each station is increased by 19.11%~28.58% on average, the accuracy of the MAE value is increased by 27.66%~29.63% on average, and the R2 value is between 0.95 and 0.97, which significantly improves the prediction accuracy of GVLSTM model, which proves the effectiveness and feasibility of GVLSTM model prediction.
- (3)
- GVLSTM has obvious advantages in dam deformation prediction compared with other methods, and the prediction results of the GVLSTM prediction model after original sequence decomposition and reconstruction have higher accuracy and precision, providing reliable engineering application data for research on intelligent prediction of dam deformation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.R.; Niu, X.Q.; Xu, L.F.; Yan, T.Y.; Zhu, Y.T. Dam deformation prediction model based on singular spectrum analysis and improved whale optimization algorithm-optimized BP neural network. J. Hydroelectr. Eng. 2023, 42, 136–145. [Google Scholar]
- Liu, Q.; Zhang, Y.; Deng, M.; Wu, H.; Kang, Y.; Wei, J. Time series prediction method of large-scale surface subsidence based on deep learning. Acta Geod. Cartogr. Sin. 2021, 50, 396. [Google Scholar]
- Li, B.; Yang, J.; Hu, D. Dam monitoring data analysis methods: A literature review. Struct. Control Health Monit. 2020, 27, e2501. [Google Scholar] [CrossRef]
- Wang, S.; Yang, H.; Lin, Z. Research on Settlement and Section Optimization of Cemented Sand and Gravel (CSG) Dam Based on BP Neural Network. Appl. Sci. 2024, 14, 3431. [Google Scholar] [CrossRef]
- Lei, D.; Li, T.; Zhang, L.; Liu, Q.; Li, W. A novel time-delay neural grey model and its applications. Expert Syst. Appl. 2024, 238, 121673. [Google Scholar] [CrossRef]
- Kavitha, S.S.; Kaulgud, N. Quantum machine learning for support vector machine classification. Evol. Intell. 2024, 17, 819–828. [Google Scholar] [CrossRef]
- Liu, S.; Xu, J.; Ju, B. Dam deformation prediction based on EMD and RBF neural network. Bull. Surv. Mapp. 2019, 8, 88. [Google Scholar]
- Luo, H.; Jiang, Y.; Xu, Q.; Liao, L.; Yan, A.; Liu, C. A spatio-temporal network for landslide displacement prediction based on deep learning. Acta Geod. Cartogr. Sin. 2022, 51, 2160. [Google Scholar]
- Huang, L. Research on meteorological early-warning model of landslides in Wenchuan earthquake area based on machine learning. Acta Geod. Cartogr. Sin. 2022, 49, 267. [Google Scholar]
- Lee, E.H. Proactive dam operation based on inflow prediction by modified long short-term memory for improving resilience. Eng. Appl. Artif. Intell. 2024, 133, 108525. [Google Scholar] [CrossRef]
- Dal Sasso, S.F.; Sole, A.; Pascale, S.; Sdao, F.; Bateman Pinzón, A.; Medina, V. Assessment methodology for the prediction of landslide dam hazard. Nat. Hazards Earth Syst. 2014, 14, 557–567. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal Process. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Ranković, V.; Grujović, N.; Divac, D.; Milivojević, N. Development of support vector regression identification model for prediction of dam structural behaviour. Struct. Saf. 2014, 48, 33–39. [Google Scholar] [CrossRef]
- Kang, F.; Liu, J.; Li, J.; Li, S. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct. Control. Health Monit. 2017, 24, e1997. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, B.; Liu, W. Dam deformation prediction model selected by SSA-XGBoost with temporal and spatial features. J. Hydroelectr. Eng. 2024, 43, 39–53. [Google Scholar]
- Qu, X.; Yang, J.; Chang, M. A Deep Learning Model for Concrete Dam Deformation Prediction Based on RS-LSTM. J. Sens. 2019, 1, 4581672. [Google Scholar] [CrossRef]
- Lu, T.; Xie, J. Deformation monitoring data de-noising method based on variational mode de-composition combined with sample entropy. J. Geod. Geodyn. 2021, 41, 1–6. [Google Scholar]
- Liu, M.; Feng, Y.; Yang, S.; Su, H. Dam Deformation Prediction Considering the Seasonal Fluctuations Using Ensemble Learning Algorithm. Buildings 2024, 14, 2163. [Google Scholar] [CrossRef]
- Ou, B.; Zhang, C.; Xu, B.; Fu, S.; Liu, Z.; Wang, K. Innovative Approach to Dam Deformation Analysis: Integration of VMD, Fractal Theory, and WOA-DELM. Struct. Control Health Monit. 2024, 2024, 1710019. [Google Scholar] [CrossRef]
- Cai, S.; Gao, H.; Zhang, J.; Peng, M. A self-attention-LSTM method for dam deformation prediction based on CEEMDAN optimization. Appl. Soft Comput. 2024, 159, 111615. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, C.; Tan, Y. A method for pulse signal denoising based on VMD parameter optimization and grey wolf optimizer. J. Phys. Conf. Ser. IOP Publ. 2021, 1920, 012100. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, Q.; Zhang, H.; Wang, L. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mech. Syst. Signal Process. 2018, 108, 58–72. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2018, 30, 413–435. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Mittal, N.; Singh, U.; Sohi, B.S. Modified grey wolf optimizer for global engineering optimization. Appl. Comput. Intell. Soft Comput. 2016, 2016, 7950348. [Google Scholar] [CrossRef]
- Teng, Z.J.; Lv, J.L.; Guo, L.W. An improved hybrid grey wolf optimization algorithm. Soft Comput. 2019, 23, 6617–6631. [Google Scholar] [CrossRef]
- Hou, Y.; Gao, H.; Wang, Z.; Du, C. Improved grey wolf optimization algorithm and application. Sensors 2022, 22, 3810. [Google Scholar] [CrossRef]
- Nazari, M.; Sakhaei, S.M. Successive variational mode decomposition. Signal Process. 2020, 174, 107610. [Google Scholar] [CrossRef]
- Huang, Z.; Hou, Z.; Huang, J.; Sun, X.; He, X.; Chen, H.; Montillet, J.-P. A New Adaptive WVS Based Denoising Method on GNSS Vertical Time Series. Acta Geodyn. Geomater. 2023, 20, 71–82. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, X.; You, Y. Variational modal decomposition and long-short time neural networks for dam deformation prediction. Mapp. Sci. 2021, 46, 34–42. [Google Scholar]
- Lu, T.; He, J.; He, X.; Tao, R. GNSS Coordinate Time Series Denoising Method Based on Parameter-optimized Variational Mode Decomposition. Geomat. Inf. Sci. Wuhan Univ. 2023, 49, 1856–1866. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Graves, A. Long Short-term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Schmidhuber, J.; Hochreiter, S. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar]
- Chen, H.; Lu, T.; Huang, J.; He, X.; Sun, X. An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data. J. Mar. Sci. Eng. 2023, 11, 2386. [Google Scholar] [CrossRef]
- Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies; Wiley-IEEE Press: Hoboken, NJ, USA, 2001. [Google Scholar]
- Tang, G.J.; Wang, X.L. Application of parameter optimization variational modal decomposition method in early fault diagnosis of rolling bearing. J. Xi’an JiaoTong Univ. 2015, 49, 73–81. [Google Scholar]
- Yang, Y.; Liu, H.; Han, L.; Gao, P. A feature extraction method using VMD and improved envelope spectrum entropy for rolling bearing fault diagnosis. IEEE Sens. J. 2023, 23, 3848–3858. [Google Scholar] [CrossRef]
- Jabloun, M.; Ravier, P.; Buttelli, O. On the Genuine Relevance of the Data-Driven Signal Decomposition-Based Multiscale Permutation Entropy. Entropy 2022, 24, 1343. [Google Scholar] [CrossRef]
- Choi, Y.S. Improved multiscale permutation entropy measure for analysis of brain waves. Int. J. Fuzzy Log. Intell. Syst. 2017, 17, 194–201. [Google Scholar] [CrossRef]
- Lu, T.; Xie, J. EEMD-Multiscale Permutation Entropy Noise Reduction Method for GPS Elevation Time Series. J. Geod. Geodyn. 2021, 41, 111–115. [Google Scholar]
- Xu, H.; Lu, T.; Montillet, J.P.; He, X. An improved adaptive IVMD-WPT-Based noise reduction algorithm on GPS height time series. Sensors 2021, 21, 8295. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nie, W.; Xu, H.; Jian, W. Prediction of landslide displacement based on EEMD-Prophet-LSTM. J. Univ. Chin. Acad. Sci. 2023, 40, 514. [Google Scholar]
- Li, Z.; Lu, T.; He, X.; Montillet, J.P.; Tao, R. An improved cyclic multi model-eXtreme gradient boosting (CMM-XGBoost) forecasting algorithm on the GNSS vertical time series. Adv. Space Res. 2023, 71, 912–935. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, W.; Li, Z.; Lu, Y. A new multi-scale sliding window LSTM framework (MSSW-LSTM): A case study for GNSS time-series prediction. Remote Sens. 2021, 13, 3328. [Google Scholar] [CrossRef]
- Li, Z.; Lu, T.; Yu, K.; Wang, J. Interpolation of GNSS Position Time Series Using GBDT, XGBoost, and RF Machine Learning Algorithms and Models Error Analysis. Remote Sens. 2023, 15, 4374. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.; Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef]
- Piepho, H.P. An adjusted coefficient of determination (R2) for generalized linear mixed models in one go. Biom. J. 2023, 65, 2200290. [Google Scholar] [CrossRef]
- Piepho, H.P. A coefficient of determination (R2) for generalized linear mixed models. Biom. J. 2019, 61, 860–872. [Google Scholar] [CrossRef]
- Liu, B.; Xie, Y.; Wang, K.; Yu, L.; Zhou, Y.; Lv, X. Short-term multi-step wind direction prediction based on OVMD quadratic decomposition and LSTM. Sustainability 2023, 15, 11746. [Google Scholar] [CrossRef]
- Shang, X.Q.; Huang, T.L.; Chen, H.P.; Ren, W.X.; Lou, M.L. Recursive variational mode decomposition enhanced by orthogonalization algorithm for accurate structural modal identification. Mech. Syst. Signal Process. 2023, 197, 110358. [Google Scholar] [CrossRef]
Direction | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.48 | 0.63 | 0.66 | 0.65 | 0.69 | 0.66 | 0.66 | 0.73 | 0.70 | 0.65 |
E | 0.52 | 0.63 | 0.70 | 0.69 | 0.73 | 0.69 | 0.71 | 0.74 | 0.65 | 0.66 |
U | 0.54 | 0.61 | 0.69 | 0.70 | 0.75 | 0.75 | 0.77 | 0.70 | - | - |
Station | Model | N | E | U | |||
---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | ||
001 | VMDANN | 0.46 | 0.40 | 0.47 | 0.36 | 0.44 | 0.35 |
VMDGRU | 1.17 | 1.07 | 0.80 | 0.65 | 0.74 | 0.60 | |
GVLSTM | 0.31 | 0.26 | 0.40 | 0.32 | 0.34 | 0.27 | |
002 | VMDANN | 0.13 | 0.10 | 0.16 | 0.13 | 0.73 | 0.61 |
VMDGRU | 0.54 | 0.41 | 0.31 | 0.24 | 1.90 | 1.38 | |
GVLSTM | 0.11 | 0.09 | 0.14 | 0.11 | 0.53 | 0.44 | |
003 | VMDANN | 1.76 | 1.68 | 3.25 | 3.17 | 1.95 | 1.53 |
VMDGRU | 2.89 | 2.72 | 3.56 | 3.17 | 4.07 | 3.02 | |
GVLSTM | 1.25 | 1.08 | 1.77 | 1.70 | 0.84 | 0.64 | |
004 | VMDANN | 0.17 | 0.14 | 0.29 | 0.22 | 0.53 | 0.42 |
VMDGRU | 0.39 | 0.29 | 0.69 | 0.58 | 1.59 | 1.23 | |
GVLSTM | 0.09 | 0.07 | 0.19 | 0.15 | 0.51 | 0.41 | |
005 | VMDANN | 0.20 | 0.15 | 0.23 | 0.18 | 0.47 | 0.37 |
VMDGRU | 0.55 | 0.41 | 0.83 | 0.65 | 1.44 | 1.08 | |
GVLSTM | 0.18 | 0.14 | 0.15 | 0.11 | 0.41 | 0.33 | |
006 | VMDANN | 0.18 | 0.13 | 0.18 | 0.14 | 0.18 | 0.14 |
VMDGRU | 0.37 | 0.25 | 0.53 | 0.41 | 0.52 | 0.36 | |
GVLSTM | 0.09 | 0.07 | 0.12 | 0.10 | 0.17 | 0.13 |
Station | RMSE | MAE | ||||
---|---|---|---|---|---|---|
N | E | U | N | E | U | |
001 | 31.11% | 21.57% | 34.62% | 27.78% | 21.95% | 41.30% |
002 | 52.17% | 22.22% | 18.46% | 30.77% | 42.11% | 22.81% |
003 | 7.41% | 0.56% | 12.50% | 10.00% | 10.05% | 20.99% |
004 | 30.77% | 13.64% | 10.53% | 36.36% | 11.76% | 18.00% |
005 | 10.00% | 16.67% | 33.87% | 30.00% | 38.89% | 26.67% |
006 | 40.00% | 40.00% | 52.78% | 36.36% | 41.18% | 48.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Lu, T.; Hu, S.; Wang, H.; Wang, Z.; He, X.; Ding, H.; Zhang, Y. A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network. Remote Sens. 2024, 16, 3978. https://doi.org/10.3390/rs16213978
Sun X, Lu T, Hu S, Wang H, Wang Z, He X, Ding H, Zhang Y. A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network. Remote Sensing. 2024; 16(21):3978. https://doi.org/10.3390/rs16213978
Chicago/Turabian StyleSun, Xiwen, Tieding Lu, Shunqiang Hu, Haicheng Wang, Ziyu Wang, Xiaoxing He, Hongqiang Ding, and Yuntao Zhang. 2024. "A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network" Remote Sensing 16, no. 21: 3978. https://doi.org/10.3390/rs16213978
APA StyleSun, X., Lu, T., Hu, S., Wang, H., Wang, Z., He, X., Ding, H., & Zhang, Y. (2024). A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network. Remote Sensing, 16(21), 3978. https://doi.org/10.3390/rs16213978