Refined Coseismic Slip and Afterslip Distributions of the 2021 Mw 6.1 Yangbi Earthquake Based on GNSS and InSAR Observations
Abstract
:1. Introduction
2. Background of the Study Area
3. Coseismic Deformation Field Derived from InSAR and GNSS
3.1. Data and Processing
3.2. InSAR Coseismic Deformation
4. Inversion of Fault Slip Distribution
4.1. Inversion of Fault Geometry
4.2. Inversion of Coseismic Fault Slip Distribution
5. Refined Coseismic Slip and Afterslip
5.1. Time-Series Data Preparation and Processing
5.2. Re-Estimate of Coseismic Offsets and Extraction of Postseismic Deformation
5.3. Refined Coseismic Slip and Afterslip Distributions
6. Analysis and Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, F.; Qi, Y.; Yi, G.; Wu, W.; Wang, G.; Zhao, X. Relocation of the MS6.4 Yangbi earthquake sequence on May 21, 2021 in Yunnan Province and its seismogenic structure analysis. Chin. J. Geophys. 2021, 64, 2631–2646. [Google Scholar]
- Su, J.; Liu, M.; Zhang, Y.; Wang, W.; Li, H.; Yang, J.; Li, X.; Zhang, M. High resolution earthquake catalog building for the 21 May 2021 Yangbi, Yunnan, MS6.4 earthquake sequence using deep-learning phase picker. Chin. J. Geophys. 2021, 64, 2647–2656. [Google Scholar]
- Zhang, B.; Xu, G.; Lu, Z.; He, Y.; Peng, M.; Feng, X. Coseismic deformation mechanisms of the 2021 MS6.4 Yangbi earthquake, Yunnan Province, using InSAR observations. Remote Sens. 2021, 13, 3961. [Google Scholar] [CrossRef]
- Yang, J.; Wen, Y.; Xu, C. The 21 May 2021 MS6.4 Yangbi (Yunnan) earthquake: A shallow strike-slip event rupturing in blind fault. Chin. J. Geophys. 2021, 64, 3101–3110. (In Chinese) [Google Scholar]
- Yang, Z.; Liu, J.; Zhang, X.; Deng, W.; Du, G.; Wu, X. A preliminary report of the Yangbi, Yunnan, MS6.4 earthquake of May 21, 2021. Earth Planet. Phys. 2021, 5, 362–364. [Google Scholar] [CrossRef]
- Yan, K.; Wang, W.; Peng, F.; Wang, Q.; Kou, H.; Yuan, A. The seismogenic structures and migration characteristics of the 2021 Yangbi MS6.4 Earthquake sequence in Yunnan, China. Sci. China Earth Sci. 2022, 65, 1522–1537. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Shan, X.; Bürgmann, R.; Gong, W.; Tung, H.; Zhang, G.; Song, X.; Qiao, X. Multifault complex rupture and afterslip associated with the 2018 Mw6.4 Hualien earthquake in northeastern Taiwan. Geophys. J. Int. 2021, 224, 416–434. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, C.; Ghosh, A.; Meng, H.; Fang, L.; Yue, H.; Zhou, S.; Su, Y. Seismological Characterization of the 2021 Yangbi Foreshock-Mainshock Sequence, Yunnan, China: More than a Triggered Cascade. J. Geophys. Res. 2022, 127, e2022JB024534. [Google Scholar] [CrossRef]
- Ye, T.; Chen, X.; Huang, Q.; Cui, T. Three-dimensional electrical resistivity structure in focal area of the 2021 Yangbi MS6.4 Earthquake and its implication for the seismogenic mechanism. Chin. J. Geophys. 2021, 64, 2267–2277. [Google Scholar]
- Li, D.; Ding, Z.; Wu, P.; Liu, S.; Deng, F.; Zhang, X.; Zhao, H. The characteristics of crustal structure and seismogenic background of Yangbi MS6.4 earthquake on May 21, 2021 in Yunnan Province, China. Chin. J. Geophys. 2021, 64, 3083–3100. [Google Scholar]
- Sun, Q.; Guo, Z.; Pei, S.; Fu, Y.; Chen, Y. Fluids triggered the 2021 Mw6.1 Yangbi earthquake at an unmapped fault: Implications for the tectonics at the northern end of the red river fault. Seismol. Res. Lett. 2022, 93, 666–679. [Google Scholar] [CrossRef]
- Gong, W.; Ye, L.; Qiu, Y.; Lay, T.; Kanamori, H. Rupture directivity of the 2021 Mw6.0 Yangbi, Yunnan earthquake. J. Geophys. Res. 2022, 127, e2022JB024321. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, H.; Tan, Y.; Jin, M.; Li, X.; Yang, W. The cascading foreshock sequence of the MS6.4 Yangbi earthquake in Yunnan, China. Earth Planet. Sci. Lett. 2022, 591, 117594. [Google Scholar] [CrossRef]
- Liang, S.; Guo, R.; Yang, H.; Tang, X.; Xu, X.; Gan, W. Rupture imaging of the 2021 MS6.4 Yangbi, China, earthquake: Implications for the diffuse deformation in the northern region of the Red River fault. Tectonophysics 2023, 862, 229932. [Google Scholar] [CrossRef]
- Zhang, K.; Gan, W.; Liang, S.; Xiao, G.; Dai, C.; Wang, Y.; Li, Z.; Zhang, L.; Ma, G. Coseismic displacement and slip distribution of the 2021 May 21, MS6.4, Yangbi Earthquake derived from GNSS observations. Chin. J. Geophys. 2021, 64, 2253–2266. [Google Scholar]
- Li, C.; Shan, X.; Zhang, G.; Zhao, C.; Gong, W.; Zhang, Y. Slip kinematics of the 2021 Yangbi earthquake: Fore-Main-Aftershock sequence rupture along an unknown secondary fault of the Weixi–Qiaohou fault. Seismol. Res. lett. 2022, 93, 1400–1412. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Shan, X.; Qu, C.; Zhang, G.; Xie, Z.; Zhao, D.; Fan, X.; Hua, J.; Liang, S. Coseismic surface deformation and slip models of the 2021 MS6.4 Yangbi (Yunnan, China) earthquake. Seismol. Geol. 2021, 43, 692–705. [Google Scholar]
- Wang, Y.; Chen, K.; Shi, Y.; Zhang, X.; Chen, S.; Li, P.; Lu, D. Source model and simulated strong ground motion of the 2021 Yangbi, China shallow earthquake constrained by InSAR observations. Remote Sens. 2021, 13, 4138. [Google Scholar] [CrossRef]
- Lu, H.; Feng, G.; He, L.; Liu, J.; Gao, H.; Wang, Y.; Wu, X.; Wang, Y.; An, Q.; Zhao, Y. An Improved Source Model of the 2021 Mw6.1 Yangbi Earthquake (Southwest China) Based on InSAR and BOI Datasets. Remote Sens. 2022, 14, 4804. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhu, C.; Wang, S.; Li, W.; Wang, L.; Zhu, W. Coseismic deformation field extraction and fault slip inversion of the 2021 Yangbi Mw6.1 earthquake, Yunnan Province, based on time-Series InSAR. Remote Sens. 2022, 14, 1017. [Google Scholar] [CrossRef]
- Tian, J.; Gao, Y.; Luo, Y. Deep seismogenic tectonics of Yangbi MS6.4 on 21 May 2021 in the SE margin of the Tibetan plateau from earthquake sequence relocation, stress field and seismic anisotropy. Tectonophysics 2023, 851, 229768. [Google Scholar] [CrossRef]
- Peng, Z.; Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 2010, 3, 599–607. [Google Scholar] [CrossRef]
- Tobita, M. Combined logarithmic and exponential function model for fitting postseismic GNSS time series after 2011 Tohoku-Oki earthquake. Earth Planets Space 2016, 68, 41. [Google Scholar] [CrossRef]
- Langbein, J.; Murray, J.; Snyder, H. Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by Global Positioning System, electronic distance meter, creepmeters, and borehole strainmeters. Bull. Seismol. Soc. Am. 2006, 96, S304–S320. [Google Scholar] [CrossRef]
- Ragon, T.; Sladen, A.; Bletery, Q.; Vergnolle, M.; Cavalié, O.; Avallone, A.; Balestra, J.; Delouis, B. Joint inversion of coseismic and early afterslip to optimize the information content in geodetic data: Application to the 2009 Mw6.3 L’Aquila earthquake, Central Italy. J. Geophys. Res. 2019, 124, 10522–10543. [Google Scholar] [CrossRef]
- Bruhat, L.; Barbot, S.; Avouac, J.-P. Evidence for postseismic deformation of the lower crust following the 2004 Mw6. 0 Parkfield earthquake. J. Geophys. Res. Solid Earth 2011, 116, B08401. [Google Scholar] [CrossRef]
- Johanson, I.; Fielding, E.; Rolandone, F.; Bürgmann, R. Coseismic and afterslip of the 2004 Parkfield earthquake from space-geodetic data. Bull. Seismol. Soc. Am. 2006, 96, S269–S282. [Google Scholar] [CrossRef]
- Klein, E.; Bock, Y.; Xu, X.; Sandwell, D.T.; Golriz, D.; Fang, P.; Su, L. Transient deformation in California from two decades of GPS displacements: Implications for a three-dimensional kinematic reference frame. J. Geophys. Res. 2019, 124, 12189–12223. [Google Scholar] [CrossRef]
- Chen, J.; Hao, J.; Wang, Z.; Xu, T. The 21 May 2021 Mw6.1 Yangbi earthquake—A unilateral rupture event with conjugately distributed aftershocks. Seismol. Res. Lett. 2022, 93, 1382–1399. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; He, Z.; Fang, L.; Chen, Z. Aseismic slip and cascade triggering process of foreshocks leading to the 2021 Mw6.1 Yangbi earthquake. Seismol. Res. Lett. 2022, 93, 1413–1428. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Hu, J.; Feng, G.; Duan, M. Anisotropy of atmospheric delay in InSAR and its effect on InSAR atmospheric correction. J. Geod. 2018, 93, 241–265. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci. 2003, 10, 66–73. (In Chinese) [Google Scholar] [CrossRef]
- Liu, P.; Ren, T. Arias intensity attenuation relationship in Sichuan–Yunnan region, China. Bull. Earthq. Eng. 2022, 20, 6377–6406. [Google Scholar] [CrossRef]
- Tang, P.; Chang, Z. Activity of the Weishan Basin Segment of the Weixi-Qiaohou Fault. Geol. Rev. 2013, 59, 108–109. (In Chinese) [Google Scholar]
- Li, C.; Zhang, J.; Wang, W.; Sun, K.; Shan, X. The seismogenic fault of the 2021 Yunnan Yangbi Ms6.4 Earthquake. Seismol. Egol. 2021, 43, 706–721. (In Chinese) [Google Scholar]
- Rosen, P.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nürnberg, Germany, 23–26 April 2012; Volume 23, pp. 730–733. [Google Scholar]
- Izumi, Y.; Takeuchi, W.; Widodo, J.; Sulaiman, A.; Awaluddin, A.; Aditiya, A.; Razi, P.; Anggono, T.; Sumantyo, J.T.S. Temporal Subset SBAS InSAR Approach for Tropical Peatland Surface Deformation Monitoring Using Sentinel-1 Data. Remote Sens. 2022, 14, 5825. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Li, Z.; Xu, W.; Feng, G.; Hu, J.; Wang, C.; Ding, X.; Zhu, J. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophys. J. Int. 2012, 189, 898–910. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Processing strategies for phase unwrapping for INSAR applications. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR 2002), Cologne, Germany, 4–6 June 2002; pp. 353–356. [Google Scholar]
- Xu, X.; Ji, L.; Zhu, L.; Wang, G.; Zhang, W.; Li, N. The coseismic deformation characteristics and seismogenic structure of the yangbi MS6.4 earthquake. Seismol. Geol. 2021, 43, 771–789. [Google Scholar]
- Wang, C.; Ding, X.; Shan, X.; Zhang, L.; Jiang, M. Slip distribution of the 2011 Tohoku earthquake derived from joint inversion of GPS, InSAR and seafloor GPS/acoustic measurements. J. Asian Earth Sci. 2012, 57, 128–136. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear andtensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Luo, X.; Sun, J.; Shen, Z.; Yo, F. Coseismic Slip Distribution of 2010 Darfield Mw7.1 Earthquake Derived from InSAR Measurements. Chin. J. Geophys. 2013, 56, 117–128. [Google Scholar]
- Feng, G.; Ding, X.; Li, Z.; Mi, J.; Zhang, L.; Omura, M. Calibration of an InSAR-derived coseimic deformation map associated with the 2011 Mw-9.0 Tohoku-Oki earthquake. IEEE Geosic. Remote Sens. Lett. 2012, 9, 302–306. [Google Scholar] [CrossRef]
- Yang, T.; Li, B.; Fang, L.; Su, Y.; Zhong, Y.; Yang, J.; Qin, M.; Xu, Y. Relocation of the Foreshocks and Aftershocks of the 2021 MS6.4 Yangbi Earthquake Sequence, Yunnan, China. J. Earth Sci. 2022, 33, 892–900. [Google Scholar] [CrossRef]
- Chang, Z.; Zang, Y.; Chang, H. New discovery of holocene activity along the Weixi-Qiaohou fault in southeastern margin of the Tibetan plateau and its neotectonic significance. Acta Geol. Sin. 2018, 92, 2464–2465. [Google Scholar]
- Zhang, Y.; Heresh, F.; Falk, A. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar]
- Li, Z.; Muller, J.-P.; Cross, P.; Fielding, E. Interferometric syntheric aperture radar (InSAR) atmospheric correction GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. J. Geophys. Res. Space Phys. 2005, 110, B03410. [Google Scholar]
- Lei, X.; Wang, Z.; Ma, S. A preliminary study on the characteristics and mechanism of the May 2021 Ms6.4 Yang Bi earthquake sequence, Yunnan, China. Acta Seismol. Sin. 2021, 43, 261–286. [Google Scholar]
- Wessel, P.; Smith, W. New improved version of generic mapping tools released. EOS Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
- Wang, R.; Diao, F.; Hoechner, A. SDM—A geodetic inversion code incorporating with layered crust structure and curved fault geometry. In Proceedings of the European Geosciences Union Conference, Vienna, Austria, 7–12 April 2013; EGU General Assembly: Vienna, Austria, 2013. [Google Scholar]
Institution | Longitude /(°) | Latitude /(°) | Focal Depth /km | Plane I/(°) | Plane II/(°) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Strike | Dip | Rake | Strike | Dip | Rake | |||||
GCMT | 100.02 | 25.61 | 15 | 315 | 86 | 168 | 46 | 78 | 4 | 6.1 |
USGS | 100.01 | 25.76 | 17.5 | 135 | 82 | –165 | 43 | 78 | –9 | 6.1 |
CENC | 99.87 | 25.67 | 8 | – | – | – | – | – | – | 6.4 |
GFZ | 99.92 | 25.73 | 17 | 319 | 88 | –165 | – | – | – | 6.0 |
Orbit Direction | Imaging Date | Polarization | Azimuth Angle | Incident Angle | Spatial Baseline | Temporal Baseline | |
---|---|---|---|---|---|---|---|
Pre-Earthquake | Postseismic | /(°) | /(°) | m | d | ||
Ascending | 20 May 2021 | 26 May 2021 | VV | 90 | 36.55 | 30 | 6 |
Descending | 10 May 2021 | 22 May 2021 | VV | 90 | 42.16 | 48 | 12 |
Serial Number | Station Name | Location | North–South Component (mm) | East–West Component (mm) | Vertical Component (mm) | |
---|---|---|---|---|---|---|
LON (°) | LAT (°) | |||||
1 | H204 | 99.92 | 25.72 | −45.8 | 5.3 | −2.1 |
2 | YBZZ | 99.79 | 25.66 | 1.3 | −40.0 | 7.6 |
3 | YBXL | 99.91 | 25.64 | 33.0 | −9.4 | −44.2 |
4 | YBZM | 100.02 | 25.71 | −14.2 | 26.9 | −0.2 |
Parameters | Length (km) | Width (km) | Depth (km) | Dip (°) | Strike (°) | Lon (°) | Lat (°) | Slip (m) |
---|---|---|---|---|---|---|---|---|
Optimal | 12.912 | 3.2554 | 0.954 | 82.75 | 139.67 | 99.92 | 25.644 | 0.8956 |
Mean | 13.267 | 4.4436 | 0.340 | 80.69 | 141.14 | 99.919 | 25.641 | 0.8345 |
Standard deviation | 1.636 | 1.9222 | 0.784 | 7.82 | 4.60 | 0.0077 | 0.0082 | 0.2472 |
Type | Fault Length/m | Fault Width/m | Fault Depth/m | Dip | Strike |
Asc–Des | 12,912 | 3255 | 954.400 | 82.75 | 139 |
Type | Epicentral Longitude | Epicentral Latitude | Rake | Slip/m | Mw |
Asc–Des | 99.92 | 25.64 | −171 | 0.80 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, K.; Gan, W.; Liang, S. Refined Coseismic Slip and Afterslip Distributions of the 2021 Mw 6.1 Yangbi Earthquake Based on GNSS and InSAR Observations. Remote Sens. 2024, 16, 3996. https://doi.org/10.3390/rs16213996
Liu Z, Zhang K, Gan W, Liang S. Refined Coseismic Slip and Afterslip Distributions of the 2021 Mw 6.1 Yangbi Earthquake Based on GNSS and InSAR Observations. Remote Sensing. 2024; 16(21):3996. https://doi.org/10.3390/rs16213996
Chicago/Turabian StyleLiu, Zheng, Keliang Zhang, Weijun Gan, and Shiming Liang. 2024. "Refined Coseismic Slip and Afterslip Distributions of the 2021 Mw 6.1 Yangbi Earthquake Based on GNSS and InSAR Observations" Remote Sensing 16, no. 21: 3996. https://doi.org/10.3390/rs16213996
APA StyleLiu, Z., Zhang, K., Gan, W., & Liang, S. (2024). Refined Coseismic Slip and Afterslip Distributions of the 2021 Mw 6.1 Yangbi Earthquake Based on GNSS and InSAR Observations. Remote Sensing, 16(21), 3996. https://doi.org/10.3390/rs16213996