Realization of Integrated Regional Ecological Management Based on Ecosystem Service Supply and Demand Flow Networks: An Example from a Dominant Mineral Resources Development Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials and Data Proceeding
2.3. Analytical Framework
2.3.1. ESs Supply-Demand Matching and Trade-Off Analysis
ESs Supply-Demand Ratio
ESs Trade-Offs and Synergies
2.3.2. ESs Supply and Demand Flow Network Framework
Identification of ESDRs Bundles
Delineation of Source and Sink
Construction of Resistance Surface Based on ESF Features
Identification and Optimization of ESs Supply-Demand Flow Network
2.3.3. Delineation of Key Areas and Strategic Points
Identification of Key Areas
Identification of Strategic Points
3. Results
3.1. ESs Supply-Demand Matching and Trade-Offs
3.1.1. Assessments of ES Supply and Demand
3.1.2. ESs Supply-Demand Trade-Offs
3.2. Construction of ES Supply-Demand Flow Network
3.2.1. Cluster Analysis of ESDRs
3.2.2. Identification of Sources and Sinks
3.2.3. Construction of Resistance Surfaces and ESs Flow Networks
3.3. Identification and Optimization of Critical Areas in ES Flow Networks
3.3.1. Identification of Critical Areas
3.3.2. The Optimization of ES Flow Networks
4. Discussion
4.1. Effectiveness of ESs Flow Network Constructs
4.2. Restoration Strategies in the Perspective of Regional Ecological Integration
4.3. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, B.; Bai, Y.; Chen, J.; Alatalo, J.M.; Xu, X.; Liu, G.; Wang, Q. Land management to reconcile ecosystem services supply and demand mismatches-A case study in Shanghai municipality, China. Land Degrad. Dev. 2020, 31, 2684–2699. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, R.; Xia, Z.; Ye, C.; Anker, Y. Large-scale deforestation of mountainous areas during the 21st Century in Zhejiang Province. Land Degrad. Dev. 2020, 31, 1761–1774. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.; Wang, T.; Lv, X. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Yin, D.Y.; Yu, H.C.; Shi, Y.Y.; Zhao, M.Y.; Zhang, J.; Li, X.S. Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus. J. Clean. Prod. 2023, 384, 135469. [Google Scholar] [CrossRef]
- Fusaro, L.; Nardella, L.; Manes, F.; Sebastiani, A.; Fares, S. Supply and demand mismatch analysis to improve regulating ecosystem services in Mediterranean urban areas: Insights from four Italian Municipalities. Ecol. Indic. 2023, 155, 110928. [Google Scholar] [CrossRef]
- Segura-Barrero, R.; Langemeyer, J.; Badia, A.; Ventura, S.; Vila-Traver, J.; Villalba, G. The food-water-climate nexus of green infrastructure: Examining ecosystem services trade-offs of peri-urban agriculture. Sci. Total Environ. 2024, 951, 175799. [Google Scholar] [CrossRef]
- Aznarez, C.; Kumar, S.; Marquez-Torres, A.; Pascual, U.; Baro, F. Ecosystem service mismatches evidence inequalities in urban heat vulnerability. Sci. Total Environ. 2024, 922, 171215. [Google Scholar] [CrossRef]
- Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow. J. Environ. Manag. 2023, 331, 117230. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Baro, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gomez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Kalogirou, S.; Poirazidis, K.; Kefalas, G. Identifying spatial mismatches between the supply and demand of ecosystem services to achieve a sustainable management regime in the Ionian Islands (Western Greece). Land Use Policy 2019, 88, 104171. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Shahfahad; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Kastner, T.; Verburg, P.H. Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecol. Econ. 2017, 136, 14–29. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Huang, Q.; Li, L. Understanding ecosystem service flows through the metacoupling framework. Ecol. Indic. 2023, 151, 110303. [Google Scholar] [CrossRef]
- Li, K.; Hou, Y.; Andersen, P.S.; Xin, R.; Rong, Y.; Skov-Petersen, H. An ecological perspective for understanding regional integration based on ecosystem service budgets, bundles, and flows: A case study of the Jinan metropolitan area in China. J. Environ. Manag. 2022, 305, 114371. [Google Scholar] [CrossRef]
- Carvalho, P.; Finger, D.C.; Masi, F.; Cipolletta, G.; Oral, H.V.; Toth, A.; Regelsberger, M.; Exposito, A. Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. J. Clean. Prod. 2022, 338, 130652. [Google Scholar] [CrossRef]
- Cui, S.; Han, Z.; Yan, X.; Li, X.; Zhao, W.; Liu, C.; Li, X.; Zhong, J. Link Ecological and Social Composite Systems to Construct Sustainable Landscape Patterns: A New Framework Based on Ecosystem Service Flows. Remote Sens. 2022, 14, 4663. [Google Scholar] [CrossRef]
- Dabasinskas, G.; Sujetoviene, G. Spatial and Temporal Changes in Supply and Demand for Ecosystem Services in Response to Urbanization: A Case Study in Vilnius, Lithuania. Land 2024, 13, 454. [Google Scholar] [CrossRef]
- Kleemann, J.; Schroeter, M.; Bagstad, K.J.; Kuhlicke, C.; Kastner, T.; Fridman, D.; Schulp, C.J.E.; Wolff, S.; Martinez-Lopez, J.; Koellner, T.; et al. Quantifying interregional flows of multiple ecosystem services—A case study for Germany. Glob. Environ. Chang.-Hum. Policy Dimens. 2020, 61, 102051. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, J.; Huang, J. Linking ecosystem service flow to water-related ecological security pattern: A methodological approach applied to a coastal province of China. J. Environ. Manag. 2023, 345, 118725. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Jiao, L.; Lian, X.; Wang, W. Linking supply-demand balance of ecosystem services to identify ecological security patterns in urban agglomerations. Sustain. Cities Soc. 2023, 92, 104497. [Google Scholar] [CrossRef]
- Wu, J.; Fan, X.; Li, K.; Wu, Y. Assessment of ecosystem service flow and optimization of spatial pattern of supply and demand matching in Pearl River Delta, China. Ecol. Indic. 2023, 153, 110452. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Y.; Bai, Y. Construction of ecological security pattern in national land space from the perspective of the community of life in mountain, water, forest, field, lake and grass: A case study in Guangxi Hechi, China. Ecol. Indic. 2022, 139, 108867. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Tian, S.; Wang, J. A multi-scale analysis framework of different methods used in establishing ecological networks. Landsc. Urban. Plan. 2022, 228, 104579. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Liu, M.; Dong, J.; Ma, C. Integrating patch stability and network connectivity to optimize ecological security pattern. Landsc. Ecol. 2024, 39, 54. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.n.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Zhang, F.; Teng, Y.; Wang, C.; Chu, X.; Kumi, M.A. The tradeoffs between food supply and demand from the perspective of ecosystem service flows: A case study in the Pearl River Delta, China. J. Environ. Manag. 2022, 301, 113814. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, C. Managing the supply-demand mismatches and potential flows of ecosystem services from the perspective of regional integration: A case study of Hangzhou, China. Sci. Total Environ. 2023, 902, 165918. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, D.; Zhou, L.; Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 2020, 115, 106418. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, Z.Y.; Zeng, Y.Y.; Wu, M.D.; Huang, Z.W.; Huang, Q. Integrating land-sea coordination into construction of an ecological security pattern for urban agglomeration: A case study in the Guangdong-Hong Kong-Macao Greater Bay Area. Environ. Sci. Pollut. Res. Int. 2024, 31, 2671–2686. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table. Sci. Total Environ. 2022, 807, 151036. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, W.; Ye, Y.; Lv, X.; Yang, W. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi-arid areas? A study from an Ecological Capital perspective. Land Degrad. Dev. 2020, 31, 1969–1989. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, E27–E39. [Google Scholar] [CrossRef]
- Kuri, F.; Murwira, A.; Murwira, K.S.; Masocha, M. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 39–46. [Google Scholar] [CrossRef]
- He, G.; Zhang, L.; Wei, X.; Jin, G. Scale effects on the supply-demand mismatches of ecosystem services in Hubei Province, China. Ecol. Indic. 2023, 153, 110461. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, J.; Xu, Z.; Wang, X.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274. [Google Scholar] [CrossRef]
- Cui, F.; Tang, H.; Zhang, Q.; Wang, B.; Dai, L. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosyst. Serv. 2019, 39, 100984. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Wang, L.-J.; Gong, J.-W.; Ma, S.; Wu, S.; Zhang, X.; Jiang, J. Ecosystem service supply-demand and socioecological drivers at different spatial scales in Zhejiang Province, China. Ecol. Indic. 2022, 140, 109058. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial-temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Wang, H.; Wu, S.; Liang, Z.; Zhang, Y.; Wei, F.; Li, S.; Ma, L.; Wang, Y.; et al. Understanding the spatial relationships and drivers of ecosystem service supply-demand mismatches towards spatially-targeted management of social-ecological system. J. Clean. Prod. 2023, 406, 136882. [Google Scholar] [CrossRef]
- Dittrich, A.; Seppelt, R.; Vaclavik, T.; Cord, A.F. Integrating ecosystem service bundles and socio-environmental conditions—A national scale analysis from Germany. Ecosyst. Serv. 2017, 28, 273–282. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Lamarque, P.; Martín-López, B.; Crouzat, E.; Gos, P.; Byczek, C.; Lavorel, S. An interdisciplinary methodological guide for quantifying associations between ecosystem services—ScienceDirect. Glob. Environ. Chang. 2014, 28, 298–308. [Google Scholar] [CrossRef]
- Men, D.; Pan, J. Incorporating network topology and ecosystem services into the optimization of ecological network: A case study of the Yellow River Basin. Sci. Total Environ. 2024, 912, 169004. [Google Scholar] [CrossRef]
- Saura, S.; Torne, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yue, W.; Wu, T. Optimizing ecological security pattern in the coal resource-based city: A case study in Shuozhou City, China. Ecol. Indic. 2021, 130, 108026. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Kasimu, A.; Fang, C.; Reheman, R.; Zhang, X.; Han, F.; Zhao, Y.; Aizizi, Y. Establishing and optimizing the ecological security pattern of the urban agglomeration in arid regions of China. J. Clean. Prod. 2023, 427, 139301. [Google Scholar] [CrossRef]
- Xu, B.; Pan, J. Simulation and measurement of soil conservation service flow in the Loess Plateau: A case study for the Jinghe River Basin, Northwestern China. Ecol. Indic. 2022, 141, 109072. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, S.; Wang, Z.; Gao, H.; Feng, S.; Wei, B.; Hou, Z.; Xiao, F.; Jing, L.; Liao, X. The Impact of Land Use and Landscape Pattern on Ecosystem Services in the Dongting Lake Region, China. Remote Sens. 2023, 15, 2228. [Google Scholar] [CrossRef]
- Zhu, Q.; Tran, L.T.; Wang, Y.; Qi, L.; Zhou, W.; Zhou, L.; Yu, D.; Dai, L. A framework of freshwater services flow model into assessment on water security and quantification of transboundary flow: A case study in northeast China. J. Environ. Manag. 2022, 304, 114318. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Fang, Z.; Liu, G.; Zhang, F.; Zhang, H.; Li, X. Integrating river health into the supply and demand management framework for river basin ecosystem services. Sustain. Prod. Consum. 2022, 33, 189–202. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Yang, L.; Huang, C.; Xu, N.; Gu, T.; Zeng, J. Spillover effects of urbanization on carbon emissions: A global view from 2000 to 2019. Environ. Impact Assess. Rev. 2023, 102, 107182. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, F.; Qin, L. Construction and stability evaluation of ecological networks in the Loess Plateau. Ecol. Indic. 2024, 159, 111697. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Huang, Y. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management. J. Environ. Manag. 2023, 325, 116591. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lei, S.; Yan, Q.; Bian, Z.; Lu, Q. Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar] [CrossRef]
Data | Description | Resolution | Source |
---|---|---|---|
LUCC | Being classified into 6 types | 30 m | Landsat-5,7,8 (https://earthengine.google.com/) |
Climate data | Data about precipitation, temperature, evapotranspiration | Weather station | Chinese meteorological data network (http://data.cma.cn/) |
Soil data | Data about sand, silt, and clay content (%), soil depth, organic carbon (%) | 1 km | Harmonized World Soil Database (HWSD) (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). |
DEM | Data about elevation and slope | 30 m | Geospatial Data Cloud (http://www.gscloud.cn) |
Population | Population density (person/km2) | 1 km | National Qinghai-Tibet Plateau Scientific Data Center |
GDP | Gross domestic product density (1 × 104 yuan/km2) | 1 km | |
Nighttime light data | The Light Information of Earth at Night | 1 km | NPP/VIIRS dataset (https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html) |
Geologic environment | Geological disaster risks and Location of the mines in the study area | Natural Resources Agency of Liaoning Province | |
Vector map data | Administrative divisions in China | National Geographic Information Resource Catalog Service System (https://www.webmap.cn/) | |
Statistical data | Data about crop yield, energy consumption, and water consumption | Water Resources Bulletin; The Liaoning Provincial Bureau of Statistics |
ESs | Type | Methods | Description |
---|---|---|---|
FP | Supply | Measurable NPP equation | The food supply capacity of agro-ecosystems [37]. |
Demand | Estimated based on per capita food demand standards and population size | Socio-ecological system food demand | |
CS | Supply | The CS module of the InVEST 3.10.0 | Carbon storage capacity of terrestrial systems [38]. |
Demand | Quantified by the consumption and carbon emission coefficient of standard coal | Carbon emissions from industries, services, and households [39]. | |
WY | Supply | The WY module of the InVEST 3.10.0 | The water production capacity of the ecosystem [40]. |
Demand | Urban Water Balance Sheet | Water consumption for agricultural, industrial, domestic, and ecological environment [41]. | |
SC | Supply | RUSLE model | The difference between the potential soil erosion and the actual soil loss [42]. |
Demand | A threshold for soil retention management | The necessity of soil erosion prevention [16]. | |
HQ | Supply | The HQ module of the InVEST 3.10.0 | Ecosystems provide a quality of environment suitable for living organisms. |
Demand | Spatial analysis tools of ArcGIS 10.6 | The level of environment required for the survival of organisms [43]. |
Type | HQ | Weight | WY | Weight | CS | Weight | SC | Weight |
---|---|---|---|---|---|---|---|---|
LUCC | √ | 0.4055 | √ | 0.2348 | √ | 0.3025 | ||
Slope | √ | 0.2374 | √ | 0.2757 | ||||
Elevation | √ | 0.1954 | √ | 0.2853 | ||||
NDVI | √ | 0.202 | √ | 0.2824 | √ | 0.258 | ||
Recessive resistance | √ | 0.1551 | √ | 0.1997 | √ | 0.1811 | ||
Stream order | √ | 0.3075 | ||||||
Water demand | √ | 0.2624 | ||||||
Wind speed | √ | 0.2154 | ||||||
Correction factor | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Zhao, Y.; Li, H.; Deng, H.; Xu, H.; Xing, Y.; Li, D. Realization of Integrated Regional Ecological Management Based on Ecosystem Service Supply and Demand Flow Networks: An Example from a Dominant Mineral Resources Development Area. Remote Sens. 2024, 16, 4021. https://doi.org/10.3390/rs16214021
Xiao S, Zhao Y, Li H, Deng H, Xu H, Xing Y, Li D. Realization of Integrated Regional Ecological Management Based on Ecosystem Service Supply and Demand Flow Networks: An Example from a Dominant Mineral Resources Development Area. Remote Sensing. 2024; 16(21):4021. https://doi.org/10.3390/rs16214021
Chicago/Turabian StyleXiao, Sheng, Yanling Zhao, Hui Li, Hairong Deng, Hao Xu, Yimin Xing, and Dan Li. 2024. "Realization of Integrated Regional Ecological Management Based on Ecosystem Service Supply and Demand Flow Networks: An Example from a Dominant Mineral Resources Development Area" Remote Sensing 16, no. 21: 4021. https://doi.org/10.3390/rs16214021
APA StyleXiao, S., Zhao, Y., Li, H., Deng, H., Xu, H., Xing, Y., & Li, D. (2024). Realization of Integrated Regional Ecological Management Based on Ecosystem Service Supply and Demand Flow Networks: An Example from a Dominant Mineral Resources Development Area. Remote Sensing, 16(21), 4021. https://doi.org/10.3390/rs16214021