Geomorphological Insights to Analyze the Kinematics of a DSGSD in Western Sicily (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical, Geological, and Geomorphological Setting
2.2. SAR Data
2.3. Slope Stability Analysis
3. Results
3.1. Field Activity and Geomorphological Characterization of the Area
3.2. SAR Analysis of the Area
- -
- a first pattern (Block 1; B_1), in the highest part of the slope, with average values of velocity in the timespan considered of −1.3 mm/yr along the LoS (Line of Sight), with minimum and maximum velocities of −6.5 and 1.1 mm/yr, respectively.
- -
- a second pattern (Block 2; B_2), proceeding northwestward, characterized by a higher average velocity of the PSs (−2.3 mm/yr), ranging between −13.3 and 3.6 mm/yr;
- -
- Block 3 (B_3), down the valley of Mt. San Calogero, presents average displacement rates of −4.5 mm/yr, with minimum and maximum rates of −12.7 and 2.4 mm/yr.
3.3. Slope Stability Analysis of the DSGSD
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Frattini, P. Slow Rock-Slope Deformation. In Landslides; Clague, J.J., Stead, D., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 207–221. ISBN 978-0-511-74036-7. [Google Scholar]
- Discenza, M.E.; Esposito, C.; Komatsu, G.; Miccadei, E. Large-Scale and Deep-Seated Gravitational Slope Deformations on Mars: A Review. Geosciences 2021, 11, 174. [Google Scholar] [CrossRef]
- Bigotcormier, F.; Braucher, R.; Bourles, D.; Guglielmi, Y.; Dubar, M.; Stephan, J. Chronological Constraints on Processes Leading to Large Active Landslides. Earth Planet. Sci. Lett. 2005, 235, 141–150. [Google Scholar] [CrossRef]
- Cruden, D.M.; Hu, X.Q. Exhaustion and Steady State Models for Predicting Landslide Hazards in the Canadian Rocky Mountains. Geomorphology 1993, 8, 279–285. [Google Scholar] [CrossRef]
- Hippolyte, J.-C.; Bergerat, F.; Gordon, M.B.; Bellier, O.; Espurt, N. Keys and Pitfalls in Mesoscale Fault Analysis and Paleostress Reconstructions, the Use of Angelier’s Methods. Tectonophysics 2012, 581, 144–162. [Google Scholar] [CrossRef]
- Hippolyte, J.-C.; Bourlès, D.; Braucher, R.; Carcaillet, J.; Léanni, L.; Arnold, M.; Aumaitre, G. Cosmogenic 10Be Dating of a Sackung and Its Faulted Rock Glaciers, in the Alps of Savoy (France). Geomorphology 2009, 108, 312–320. [Google Scholar] [CrossRef]
- Barla, G.; Antolini, F.; Barla, M.; Mensi, E.; Piovano, G. Monitoring of the Beauregard Landslide (Aosta Valley, Italy) Using Advanced and Conventional Techniques. Eng. Geol. 2010, 116, 218–235. [Google Scholar] [CrossRef]
- Di Luzio, E.; Discenza, M.E.; Di Martire, D.; Putignano, M.L.; Minnillo, M.; Esposito, C.; Scarascia Mugnozza, G. Investigation of the Luco Dei Marsi DSGSD Revealing the First Evidence of a Basal Shear Zone in the Central Apennine Belt (Italy). Geomorphology 2022, 408, 108249. [Google Scholar] [CrossRef]
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide Monitoring by Using Ground-Based SAR Interferometry: An Example of Application to the Tessina Landslide in Italy. Eng. Geol. 2003, 68, 15–30. [Google Scholar] [CrossRef]
- Discenza, M.; Di Luzio, E.; Martino, S.; Minnillo, M.; Esposito, C. Role of Inherited Tectonic Structures on Gravity-Induced Slope Deformations: Inference from Numerical Modeling on the Luco Dei Marsi DSGSD (Central Apennines). Appl. Sci. 2023, 13, 4417. [Google Scholar] [CrossRef]
- Bovenga, F.; Pasquariello, G.; Pellicani, R.; Refice, A.; Spilotro, G. Landslide Monitoring for Risk Mitigation by Using Corner Reflector and Satellite SAR Interferometry: The Large Landslide of Carlantino (Italy). Catena 2017, 151, 49–62. [Google Scholar] [CrossRef]
- Bozzano, F.; Carabella, C.; De Pari, P.; Discenza, M.E.; Fantucci, R.; Mazzanti, P.; Miccadei, E.; Rocca, A.; Romano, S.; Sciarra, N. Geological and Geomorphological Analysis of a Complex Landslides System: The Case of San Martino Sulla Marruccina (Abruzzo, Central Italy). J. Maps 2020, 16, 126–136. [Google Scholar] [CrossRef]
- Confuorto, P.; Di Martire, D.; Infante, D.; Novellino, A.; Papa, R.; Calcaterra, D.; Ramondini, M. Monitoring of Remedial Works Performance on Landslide-Affected Areas Through Ground- and Satellite-Based Techniques. Catena 2019, 178, 77–89. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Tang, M.; Liao, M.; Xu, Q.; Gong, J.; Ao, M. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China. Remote Sens. Environ. 2018, 205, 180–198. [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Montalti, R.; Solari, L.; Tofani, V.; Casagli, N. Persistent Scatterers Continuous Streaming for Landslide Monitoring and Mapping: The Case of the Tuscany Region (Italy). Landslides 2019, 16, 2033–2044. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Raspini, F.; Barra, A.; Bianchini, S.; Confuorto, P.; Casagli, N.; Crosetto, M. Review of Satellite Interferometry for Landslide Detection in Italy. Remote Sens. 2020, 12, 1351. [Google Scholar] [CrossRef]
- Zhao, Q.; Lei, Y.; Ma, G.; Pepe, A.; Reale, D.; Kubanek, J.; Liu, M.; Yang, T. Surface Deformation of the Shanghai Coastal Area Revealed by a Multi-Satellite Dinsar Investigation. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA; pp. 537–540. [Google Scholar]
- Ambrosi, C.; Crosta, G.B. Large Sackung along Major Tectonic Features in the Central Italian Alps. Eng. Geol. 2006, 83, 183–200. [Google Scholar] [CrossRef]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and Monitoring of Landslide Displacements by Means of L-Band Satellite SAR Interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
- Saroli, M.; Stramondo, S.; Moro, M.; Doumaz, F. Movements Detection of Deep Seated Gravitational Slope Deformations by Means of InSAR Data and Photogeological Interpretation: Northern Sicily Case Study. Terra Nova 2005, 17, 35–43. [Google Scholar] [CrossRef]
- Bayer, B.; Simoni, A.; Schmidt, D.; Bertello, L. Using Advanced InSAR Techniques to Monitor Landslide Deformations Induced by Tunneling in the Northern Apennines, Italy. Eng. Geol. 2017, 226, 20–32. [Google Scholar] [CrossRef]
- Bordoni, M.; Bonì, R.; Colombo, A.; Lanteri, L.; Meisina, C. A Methodology for Ground Motion Area Detection (GMA-D) Using A-DInSAR Time Series in Landslide Investigations. Catena 2018, 163, 89–110. [Google Scholar] [CrossRef]
- Samsonov, S.; Dille, A.; Dewitte, O.; Kervyn, F.; d’Oreye, N. Satellite Interferometry for Mapping Surface Deformation Time Series in One, Two and Three Dimensions: A New Method Illustrated on a Slow-Moving Landslide. Eng. Geol. 2020, 266, 105471. [Google Scholar] [CrossRef]
- Guerriero, L.; Prinzi, E.P.; Calcaterra, D.; Ciarcia, S.; Di Martire, D.; Guadagno, F.M.; Ruzza, G.; Revellino, P. Kinematics and Geologic Control of the Deep-Seated Landslide Affecting the Historic Center of Buonalbergo, Southern Italy. Geomorphology 2021, 394, 107961. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Zanchi, A.; Ravazzi, C. Onset and Timing of Deep-Seated Gravitational Slope Deformations in the Eastern Alps, Italy. Geomorphology 2009, 103, 113–129. [Google Scholar] [CrossRef]
- Bovis, M.J.; Evans, S.G. Extensive Deformations of Rock Slopes in Southern Coast Mountains, Southwest British Columbia, Canada. Eng. Geol. 1996, 44, 163–182. [Google Scholar] [CrossRef]
- Dramis, F.; Sorriso-Valvo, M. Deep-Seated Gravitational Slope Deformations, Related Landslides and Tectonics. Eng. Geol. 1994, 38, 231–243. [Google Scholar] [CrossRef]
- Ghirotti, M.; Martin, S.; Genevois, R. The Celentino Deep-Seated Gravitational Slope Deformation (DSGSD): Structural and Geomechanical Analyses (Peio Valley, NE Italy). SP 2011, 351, 235–251. [Google Scholar] [CrossRef]
- Massironi, M.; Zampieri, D.; Bianchi, M.; Schiavo, A.; Franceschini, A. Use of PSInSARTM Data to Infer Active Tectonics: Clues on the Differential Uplift across the Giudicarie Belt (Central-Eastern Alps, Italy). Tectonophysics 2009, 476, 297–303. [Google Scholar] [CrossRef]
- Teshebaeva, K.; Echtler, H.; Bookhagen, B.; Strecker, M. Deep-seated gravitational slope deformation (DSGSD) and slow-moving landslides in the southern Tien Shan Mountains: New insights from InSAR, tectonic and geomorphic analysis. Earth Surf. Process. Landf. 2019, 44, 2333–2348. [Google Scholar] [CrossRef]
- Agnesi, V.; Conoscenti, C.; Di Maggio, C.; Rotigliano, E. Geomorphology of the Capo San Vito Peninsula (NW Sicily): An Example of Tectonically and Climatically Controlled Landscape. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; World Geomorphological Landscapes; Springer: Cham, Switzerland, 2017; pp. 455–465. ISBN 978-3-319-26192-8. [Google Scholar]
- Agnesi, V.; Macaluso, T.; Monteleone, S.; Pipitone, G. Espansioni Laterali (Lateral Spreads) Nalla Sicilia Occidentale. Geol. Appl. Idrogeol. 1978, 13, 319–326. [Google Scholar]
- Agnesi, V.; Pingue, F.; Rotigliano, E.; Di Maggio, C.; Luzio, D.; Tammaro, U. Realizzazione Di Una Rete Di Monitoraggio Geodetico Della Frana Di Scopello (Sicilia Nord-Occidentale). Mem. Soc. Geol. Ital. 2006, 2, 15–27. [Google Scholar]
- Agnesi, V.; Rotigliano, E.; Tammaro, U.; Cappadonia, C.; Conoscenti, C.; Obrizzo, F.; Di Maggio, C.; Luzio, D.; Pingue, F. GPS Monitoring of the Scopello (Sicily, Italy) DGSD Phenomenon: Relationships Between Surficial and Deep-Seated Morphodynamics. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 1321–1325. ISBN 978-3-319-09056-6. [Google Scholar]
- Di Maggio, C.; Madonia, G.; Vattano, M. Deep-Seated Gravitational Slope Deformations in Western Sicily: Controlling Factors, Triggering Mechanisms, and Morphoevolutionary Models. Geomorphology 2014, 208, 173–189. [Google Scholar] [CrossRef]
- Di Maggio, C.; Madonia, G.; Vattano, M.; Agnesi, V.; Monteleone, S. Geomorphological Evolution of Western Sicily, Italy. Geol. Carpathica 2017, 68, 80–93. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Cappadonia, C.; Di Martire, D.; Calcaterra, D.; Tammaro, U.; Agnesi, V. A Combined Gnss-Dinsar-Irt Study for the Characterization of a Deep-Seated Gravitational Slope Deformation. Ital. J. Eng. Geol. Environ. 2021, 1, 151–162. [Google Scholar] [CrossRef]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, C.; Vecchioli, F.; et al. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-SkyMed Radar Data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- Di Martire, D.; Paci, M.; Confuorto, P.; Costabile, S.; Guastaferro, F.; Verta, A.; Calcaterra, D. A Nation-Wide System for Landslide Mapping and Risk Management in Italy: The Second Not-Ordinary Plan of Environmental Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 143–157. [Google Scholar] [CrossRef]
- Cappadonia, C.; Confuorto, P.; Sepe, C.; Di Martire, D. Preliminary Results of a Geomorphological and DInSAR Characterization of a Recently Identified Deep-Seated Gravitational Slope Deformation in Sicily (Southern Italy). Rend. Online Soc. Geol. Ital. 2019, 49, 149–156. [Google Scholar] [CrossRef]
- Sulli, A.; Agate, M.; Zizzo, E.; Gasparo Morticelli, M.; Lo Iacono, C. Geo-Hazards of the San Vito Peninsula Offshore (Southwestern Tyrrhenian Sea). J. Maps 2021, 17, 185–196. [Google Scholar] [CrossRef]
- Catalano, R.; Valenti, V.; Albanese, C.; Accaino, F.; Sulli, A.; Tinivella, U.; Gasparo Morticelli, M.; Zanolla, C.; Giustiniani, M. Sicily’s Fold–Thrust Belt and Slab Roll-Back: The SI.RI.PRO. Seismic Crustal Transect. J. Geol. Soc. 2013, 170, 451–464. [Google Scholar] [CrossRef]
- Caracausi, A.; Sulli, A. Outgassing of Mantle Volatiles in Compressional Tectonic Regime Away From Volcanism: The Role of Continental Delamination. Geochem. Geophys. Geosyst. 2019, 20, 2007–2020. [Google Scholar] [CrossRef]
- Gugliotta, C.; Gasparo Morticelli, M.; Avellone, G.; Agate, M.; Barchi, M.R.; Albanese, C.; Valenti, V.; Catalano, R. Middle Miocene–Early Pliocene Wedge-Top Basins of NW Sicily (Italy): Constraints for the Tectonic Evolution of a ‘Non-Conventional’ Thrust Belt, Affected by Transpression. JGS 2014, 171, 211–226. [Google Scholar] [CrossRef]
- Agate, M.; Basilone, L.; Di Maggio, C.; Contino, A.; Pierini, S.; Catalano, R. Quaternary Marine and Continental Unconformity-Bounded Stratigraphic Units of the NW Sicily Coastal Belt. J. Maps 2017, 13, 425–437. [Google Scholar] [CrossRef]
- Catalano, R.; Avellone, G.; Basilone, L.; Contino, A.; Agate, M. Carta Geologica d’Italia Alla Scala 1:50.000 e Note Illustrative Dei Fogli 609–596 Termini Imerese—Capo Plaia; ISPRA: Rome, Italy, 2011.
- Sacco, P.; Battagliere, M.L.; Coletta, A. COSMO-SkyMed Mission Status: Results, Lessons Learnt and Evolutions. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: New York, NY, USA; pp. 207–210. [Google Scholar]
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; IEEE: New York, NY, USA; pp. II-449–II-452. [Google Scholar]
- Mikola, R.G. ADONIS: A Free Finite Element Analysis Software with an Interactive Graphical User Interface for Geoengineers. In Proceedings of the GeoOttawa2017 Conference, San Francisco, CA, USA, 1–4 October 2017. [Google Scholar]
- Forgia, V.; Sineo, L. Within the Symbolic World of the Prehistoric Hunters: A GIS-Based and 3D Model Analysis of Sites with Complexes of Linear Incisions in Western Sicily. Digit. Appl. Archaeol. Cult. Herit. 2021, 20, e00175. [Google Scholar] [CrossRef]
- Martinello, C.; Mercurio, C.; Cappadonia, C.; Bellomo, V.; Conte, A.; Mineo, G.; Di Frisco, G.; Azzara, G.; Bufalini, M.; Materazzi, M.; et al. Using Public Landslide Inventories for Landslide Susceptibility Assessment at the Basin Scale: Application to the Torto River Basin (Central-Northern Sicily, Italy). Appl. Sci. 2023, 13, 9449. [Google Scholar] [CrossRef]
- Abate, S.; Albanese, C.; Angelino, A.; Balasco, M.; Bambina, B.; Bellani, S.; Bertini, G.; Botteghi, S.; Bruno, P.P.; Caielli, G.; et al. VIGOR: Sviluppo Geotermico Nella Regione Sicilia—Studi Di Fattibilità a Mazara Del Vallo e Termini Imerese, Valutazione Geotermica Con Geofisica Elitrasportata. In Progetto VIGOR—Valutazione Del Potenziale Geotermico Delle Regioni Della Convergenza, POI Energie Rinnovabili e Risparmio Energetico 2007–2013; CNR-IGG 2014; IRIS: London, UK, 2015. [Google Scholar]
- Pasuto, A.; Soldati, M. 7.25 Lateral Spreading. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 239–248. ISBN 978-0-08-088522-3. [Google Scholar]
- Di Martire, D.; Novellino, A.; Ramondini, M.; Calcaterra, D. A-differential synthetic aperture radar interferometry analysis of a deep seated gravitational slope deformation occurring at Bisaccia (Italy). Sci. Total Environ. 2016, 550, 556–573. [Google Scholar] [CrossRef]
- Fenelli, G.B.; Picarelli, L.; Silvestri, F. Deformation process of a hill shaken by the Irpinia earthquake in 1980. In Proceedings of the French-Italian Conference on Slope Stability in Seismic Areas, Imperia, Italy, 14–15 May 1992; pp. 47–62. [Google Scholar]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Glueer, F.; Loew, S.; Manconi, A.; Aaron, J. From Toppling to Sliding: Progressive Evolution of the Moosfluh Landslide, Switzerland. JGR Earth Surf. 2019, 124, 2899–2919. [Google Scholar] [CrossRef]
- Agliardi, F.; Scuderi, M.M.; Fusi, N.; Collettini, C. Slow-to-Fast Transition of Giant Creeping Rockslides Modulated by Undrained Loading in Basal Shear Zones. Nat. Commun. 2020, 11, 1352. [Google Scholar] [CrossRef]
- Peduto, D.; Ferlisi, S.; Nicodemo, G.; Reale, D.; Pisciotta, G.; Gullà, G. Empirical Fragility and Vulnerability Curves for Buildings Exposed to Slow-Moving Landslides at Medium and Large Scales. Landslides 2017, 14, 1993–2007. [Google Scholar] [CrossRef]
- Petley, D.N.; Allison, R.J. The Mechanics of Deep-seated Landslides. Earth Surf. Process. Landf. 1997, 22, 747–758. [Google Scholar] [CrossRef]
Parameter | MUF | FUN | SCT | CRI1 | CRI2 | CRI3 | CRI4 | ISO |
---|---|---|---|---|---|---|---|---|
Unit weight (kg/m3) | 2100 | 2500 | 2500 | 2200 | 2300 | 2400 | 2500 | 2500 |
UCS (MPa) | / | 90 | 75 | 40 | 80 | 50 | 70 | / |
GSI | / | 60 | 40 | 30 | 50 | 30 | 30 | / |
mi | / | 9 | 7 | 6 | 9 | 6 | 7 | / |
D | / | 0 | 0 | 0 | 0 | 0 | 0 | / |
Young (MPa) | 4000 | 17,000 | 5000 | 2000 | 9000 | 2300 | 2600 | 5000 |
Poisson | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
φ (°) | 30 | 45 | 35 | 30 | 45 | 30 | 35 | / |
c (MPa) | 0.5 | 2.5 | 1.2 | 0.6 | 1.3 | 0.8 | 0.65 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappadonia, C.; Confuorto, P.; Di Martire, D.; Calcaterra, D.; Moretti, S.; Rotigliano, E.; Guerriero, L. Geomorphological Insights to Analyze the Kinematics of a DSGSD in Western Sicily (Southern Italy). Remote Sens. 2024, 16, 4040. https://doi.org/10.3390/rs16214040
Cappadonia C, Confuorto P, Di Martire D, Calcaterra D, Moretti S, Rotigliano E, Guerriero L. Geomorphological Insights to Analyze the Kinematics of a DSGSD in Western Sicily (Southern Italy). Remote Sensing. 2024; 16(21):4040. https://doi.org/10.3390/rs16214040
Chicago/Turabian StyleCappadonia, Chiara, Pierluigi Confuorto, Diego Di Martire, Domenico Calcaterra, Sandro Moretti, Edoardo Rotigliano, and Luigi Guerriero. 2024. "Geomorphological Insights to Analyze the Kinematics of a DSGSD in Western Sicily (Southern Italy)" Remote Sensing 16, no. 21: 4040. https://doi.org/10.3390/rs16214040
APA StyleCappadonia, C., Confuorto, P., Di Martire, D., Calcaterra, D., Moretti, S., Rotigliano, E., & Guerriero, L. (2024). Geomorphological Insights to Analyze the Kinematics of a DSGSD in Western Sicily (Southern Italy). Remote Sensing, 16(21), 4040. https://doi.org/10.3390/rs16214040