Tree Species Classification by Multi-Season Collected UAV Imagery in a Mixed Cool-Temperate Mountain Forest
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. UAV Data and Preprocessing
3.2. Image Classification
3.3. Accuracy Metrics and Model Evaluation
4. Results
4.1. Data Capture Season and Input Variables
4.2. Tree-Species-Specific Classification Accuracy
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Japan Forestry Agency. Annual Report on Forest and Forestry in Japan Fiscal Year 2019; Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2019.
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping Forest Tree Species in High Resolution UAV-Based RGB-Imagery by Means of Convolutional Neural Networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Chambers, L.E.; Altwegg, R.; Barbraud, C.; Barnard, P.; Beaumont, L.J.; Crawford, R.J.M.; Durant, J.M.; Hughes, L.; Keatley, M.R.; Low, M.; et al. Phenological Changes in the Southern Hemisphere. PLoS ONE 2013, 8, e75514. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Puc-Kauil, R.; Ángeles-Pérez, G.; Valdez-Lazalde, J.R.; Reyes-Hernández, V.J.; Dupuy-Rada, J.M.; Schneider, L.; Pérez-Rodríguez, P.; García-Cuevas, X. Species-Specific Biomass Equations for Small-Size Tree Species in Secondary Tropical Forests. Trop. Subtrop. Agroecosyst. 2019, 22, 735–754. [Google Scholar] [CrossRef]
- Lin, J.; Kroll, C.N.; Nowak, D.J.; Greenfield, E.J. A Review of Urban Forest Modeling: Implications for Management and Future Research. Urban For. Urban Green. 2019, 43, 126366. [Google Scholar] [CrossRef]
- Modzelewska, A.; Fassnacht, F.E.; Stereńczak, K. Tree Species Identification within an Extensive Forest Area with Diverse Management Regimes Using Airborne Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101960. [Google Scholar] [CrossRef]
- Onishi, M.; Watanabe, S.; Nakashima, T.; Ise, T. Practicality and Robustness of Tree Species Identification Using UAV RGB Image and Deep Learning in Temperate Forest in Japan. Remote Sens. 2022, 14, 1710. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.B.; Ibrahim, M.R.B.; Sulong, I.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing Mangrove Forests from the Sky: Forest Inventory Using Field Data and Unmanned Aerial Vehicle (UAV) Imagery in the Matang Mangrove Forest Reserve, Peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Heinzel, J.; Koch, B. Investigating Multiple Data Sources for Tree Species Classification in Temperate Forest and Use for Single Tree Delineation. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 101–110. [Google Scholar] [CrossRef]
- Natesan, S.; Armenakis, C.; Vepakomma, U. RESNET-BASED TREE SPECIES CLASSIFICATION USING UAV IMAGES. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2-W13, 475–481. [Google Scholar] [CrossRef]
- Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the Potential of Land Surface Phenology and Seasonal Cloud Free Composites of One Year of Sentinel-2 Imagery for Tree Species Mapping in a Mountainous Region. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102208. [Google Scholar] [CrossRef]
- Simonetti, D.; Simonetti, E.; Szantoi, Z.; Lupi, A.; Eva, H.D. First Results From the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1496–1500. [Google Scholar] [CrossRef]
- Xie, B.; Cao, C.; Xu, M.; Duerler, R.S.; Yang, X.; Bashir, B.; Chen, Y.; Wang, K. Analysis of Regional Distribution of Tree Species Using Multi-Seasonal Sentinel-1&2 Imagery within Google Earth Engine. Forests 2021, 12, 565. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L. Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data. Remote Sens. 2017, 9, 1180. [Google Scholar] [CrossRef]
- Liu, H. Classification of Tree Species Using UAV-Based Multi-Spectral and Multi-Seasonal Images: A Multi-Feature-Based Approach. New For. 2024, 55, 173–196. [Google Scholar] [CrossRef]
- Veras, H.F.P.; Ferreira, M.P.; da Cunha Neto, E.M.; Figueiredo, E.O.; Corte, A.P.D.; Sanquetta, C.R. Fusing Multi-Season UAS Images with Convolutional Neural Networks to Map Tree Species in Amazonian Forests. Ecol. Inform. 2022, 71, 101815. [Google Scholar] [CrossRef]
- Shi, W.; Wang, S.; Yue, H.; Wang, D.; Ye, H.; Sun, L.; Sun, J.; Liu, J.; Deng, Z.; Rao, Y.; et al. Identifying Tree Species in a Warm-Temperate Deciduous Forest by Combining Multi-Rotor and Fixed-Wing Unmanned Aerial Vehicles. Drones 2023, 7, 353. [Google Scholar] [CrossRef]
- Hokkaido Regional Forest Office. National Forests in Hokkaido. Available online: https://www.rinya.maff.go.jp/hokkaido/koho/koho_net/library/pdf/national_forest_in_hokkaido.pdf. (accessed on 8 August 2024).
- Akitsu, T.K.; Nakaji, T.; Yoshida, T.; Sakai, R.; Mamiya, W.; Terigele; Takagi, K.; Honda, Y.; Kajiwara, K.; Nasahara, K.N. Field Data for Satellite Validation and Forest Structure Modeling in a Pure and Sparse Forest of in Northern Hokkaido. Ecol. Res. 2020, 35, 750–764. [Google Scholar] [CrossRef]
- Xu, X.; Shibata, H. Landscape Patterns of Overstory Litterfall and Related Nutrient Fluxes in a Cool-Temperate Forest Watershed in Northern Hokkaido, Japan. J. For. Res. 2007, 18, 249–254. [Google Scholar] [CrossRef]
- OpenStreetMap Wiki Accuracy of GNSS Data—OpenStreetMap Wiki. Available online: https://wiki.openstreetmap.org/w/index.php?title=Accuracy_of_GNSS_data&oldid=2376050 (accessed on 6 August 2024).
- Achanta, R.; Susstrunk, S. Superpixels and Polygons Using Simple Non-Iterative Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In Vivo Spectroscopy and Internal Optics of Leaves as Basis for Remote Sensing of Vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Modica, G.; Messina, G.; De Luca, G.; Fiozzo, V.; Praticò, S. Monitoring the Vegetation Vigor in Heterogeneous Citrus and Olive Orchards. A Multiscale Object-Based Approach to Extract Trees’ Crowns from UAV Multispectral Imagery. Comput. Electron. Agric. 2020, 175, 105500. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Hsu, C.-W. A Practical Guide to Support Vector Classification; Department of Computer Science, National Taiwan University: Taipei City, Taiwan, 2003. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative Assessment of the Measures of Thematic Classification Accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Li, H. Smile Class RandomForest. Available online: https://haifengl.github.io/api/java/smile/regression/RandomForest.html (accessed on 14 October 2024).
- Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding Variable Importances in Forests of Randomized Trees. In Advances in Neural Information Processing Systems; Burges, C.J., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NY, USA, 2013; Volume 26, Available online: https://proceedings.neurips.cc/paper_files/paper/2013/file/e3796ae838835da0b6f6ea37bcf8bcb7-Paper.pdf (accessed on 14 October 2024).
- Chehreh, B.; Moutinho, A.; Viegas, C. Latest Trends on Tree Classification and Segmentation Using UAV Data—A Review of Agroforestry Applications. Remote Sens. 2023, 15, 2263. [Google Scholar] [CrossRef]
- Yun, T.; Jiang, K.; Li, G.; Eichhorn, M.P.; Fan, J.; Liu, F.; Chen, B.; An, F.; Cao, L. Individual Tree Crown Segmentation from Airborne LiDAR Data Using a Novel Gaussian Filter and Energy Function Minimization-Based Approach. Remote Sens. Environ. 2021, 256, 112307. [Google Scholar] [CrossRef]
- Lee, E.-R.; Baek, W.-K.; Jung, H.-S. Mapping Tree Species Using CNN from Bi-Seasonal High-Resolution Drone Optic and LiDAR Data. Remote Sens. 2023, 15, 2140. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Im, J.; Zhao, Y.; Zhen, Z. A Deep-Learning-Based Tree Species Classification for Natural Secondary Forests Using Unmanned Aerial Vehicle Hyperspectral Images and LiDAR. Ecol. Indic. 2024, 159, 111608. [Google Scholar] [CrossRef]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef]
- Unmanned Aerial Vehicle: Applications in Agriculture and Environment; Avtar, R.; Watanabe, T. (Eds.) Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-27156-5. [Google Scholar]
- Avtar, R.; Suab, S.A.; Syukur, M.S.; Korom, A.; Umarhadi, D.A.; Yunus, A.P. Assessing the Influence of UAV Altitude on Extracted Biophysical Parameters of Young Oil Palm. Remote Sens. 2020, 12, 3030. [Google Scholar] [CrossRef]
UAV | Sensor | Focal Length | Image Resolution Lidar: Single Returns | Central Band and Bandwidth |
---|---|---|---|---|
DJI Phantom 4 Multispectral | Multispectral | 5.74 nm | 1600 × 1300 (2.08 MP) | |
RGB | 5.74 nm | 1600 × 1300 (2.08 MP) | n.a. | |
DJI Matrice 300 RTK | Zenmuse L1 LiDAR | n.a. | 240,000 points/s | n.a. |
Class (Species) | Common Name | Class Label | Number |
---|---|---|---|
Abies sachalinensis | Sakhalin fir | As | 55 |
Quercus crispula | Japanese oak | Qr | 46 |
Kalopanax septemlobus | Castor aralia | Ks | 16 |
Sorbus commixta | Japanese rowan | Sc | 15 |
Betula ermanii | Russian rock birch | Be | 29 |
Acer mono | Painted maple | Ac | 29 |
Picea jezoensis | Sakhalin spruce | Pj | 8 |
Total | 181 |
Vegetation Indices (VIs) | Formula | Reference |
---|---|---|
Normalized difference vegetation index (NDVI) | [26] | |
Normalized Difference Red-Edge Index (NDRE) | [27] | |
Green Chlorophyll Index (GCI) | [28] | |
Normalized Difference Red-Edge Green Index (NDEGE) | [29] |
Model | Parameter | Autum October | Winter April | Spring May | Summer June | Multi-Seasonal |
---|---|---|---|---|---|---|
SVM | Cost | 13 | 20 | 17 | 8 | 8 |
Gamma | 30 | 25 | 30 | 27 | 12 | |
CART | Max leaf node | 75 | 75 | 75 | 75 | 50 |
Min. leaf per node | 1 | 1 | 1 | 1 | 1 | |
RF | Number of trees | 500 | 500 | 500 | 500 | 500 |
Variables per split | 3 | 3 | 3 | 3 | 6 |
Model | Autum (October) | Winter (April) | Spring (May) | Summer (June) | Multi-Seasonal (All) |
---|---|---|---|---|---|
SVM | 71.27 | 61.32 | 69.06 | 63.53 | 83.42 |
CART | 62.43 | 63.53 | 67.95 | 56.90 | 75.13 |
RF | 64.64 | 70.17 | 77.90 | 71.27 | 82.32 |
Model | Classified Tree Species | Autum October 2021 | Winter April 2022 | Spring May 2022 | Summer June 2022 | Multi-Seasonal | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | ||
RF | Sakhalin fir | 78.18 | 92.59 | 78.18 | 95.56 | 78.18 | 86 | 50.91 | 90.32 | 83.64 | 93.88 |
Japanese oak | 84.78 | 69.64 | 80.43 | 59.68 | 84.78 | 79.59 | 82.61 | 74.51 | 91.3 | 84 | |
Castor Aralia | 75 | 63.16 | 50 | 80 | 68.75 | 84.62 | 81.25 | 65 | 75 | 63.16 | |
Japanese rowan | 73.33 | 61.11 | 46.67 | 63.64 | 80 | 70.59 | 80 | 85.71 | 66.67 | 83.33 | |
Russian rock birch | 33.33 | 57.14 | 83.33 | 76.92 | 66.67 | 47.06 | 75 | 69.23 | 75 | 69.23 | |
Painted maple | 72.41 | 77.78 | 55.17 | 69.57 | 79.31 | 88.46 | 82.76 | 80 | 86.21 | 89.29 | |
Sakhalin spruce | 62.5 | 71.43 | 75 | 54.55 | 62.5 | 62.5 | 62.5 | 55.56 | 62.5 | 71.43 | |
SVM | Sakhalin fir | 85.45 | 100 | 85.45 | 97.92 | 67.27 | 84.09 | 50.91 | 93.33 | 78.18 | 93.48 |
Japanese oak | 82.61 | 67.86 | 76.09 | 45.45 | 80.43 | 68.52 | 78.26 | 65.45 | 91.3 | 73.68 | |
Castor Aralia | 87.5 | 50 | 18.75 | 100 | 56.25 | 60 | 62.5 | 43.48 | 87.5 | 77.78 | |
Japanese rowan | 73.33 | 84.62 | 33.33 | 45.45 | 66.67 | 62.5 | 80 | 80 | 80 | 92.31 | |
Russian rock birch | 50 | 46.15 | 50 | 75 | 41.67 | 25 | 50 | 54.55 | 83.33 | 71.43 | |
Painted maple | 62.07 | 75 | 34.48 | 50 | 75.86 | 84.62 | 62.07 | 62.07 | 86.21 | 92.59 | |
Sakhalin spruce | 62.5 | 100 | 62.5 | 100 | 62.5 | 83.33 | 62.5 | 83.33 | 62.5 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avtar, R.; Chen, X.; Fu, J.; Alsulamy, S.; Supe, H.; Pulpadan, Y.A.; Louw, A.S.; Tatsuro, N. Tree Species Classification by Multi-Season Collected UAV Imagery in a Mixed Cool-Temperate Mountain Forest. Remote Sens. 2024, 16, 4060. https://doi.org/10.3390/rs16214060
Avtar R, Chen X, Fu J, Alsulamy S, Supe H, Pulpadan YA, Louw AS, Tatsuro N. Tree Species Classification by Multi-Season Collected UAV Imagery in a Mixed Cool-Temperate Mountain Forest. Remote Sensing. 2024; 16(21):4060. https://doi.org/10.3390/rs16214060
Chicago/Turabian StyleAvtar, Ram, Xinyu Chen, Jinjin Fu, Saleh Alsulamy, Hitesh Supe, Yunus Ali Pulpadan, Albertus Stephanus Louw, and Nakaji Tatsuro. 2024. "Tree Species Classification by Multi-Season Collected UAV Imagery in a Mixed Cool-Temperate Mountain Forest" Remote Sensing 16, no. 21: 4060. https://doi.org/10.3390/rs16214060
APA StyleAvtar, R., Chen, X., Fu, J., Alsulamy, S., Supe, H., Pulpadan, Y. A., Louw, A. S., & Tatsuro, N. (2024). Tree Species Classification by Multi-Season Collected UAV Imagery in a Mixed Cool-Temperate Mountain Forest. Remote Sensing, 16(21), 4060. https://doi.org/10.3390/rs16214060