Mare Volcanism in Apollo Basin Evaluating the Mare Basalt Genesis Models on the Moon
Abstract
:1. Introduction
2. Data and Methods
3. Lateral Heterogeneity of Apollo Basin
3.1. Topography
3.2. Mare Volcanism
Mare Units | Total Area | Estimated Thickness | Absolute Model Age (Ga) | Average FeO | Average TiO2 | Average Th | |||
---|---|---|---|---|---|---|---|---|---|
(km2) | (m) | (wt%) | (wt%) | (ppm) | |||||
Central Mare | 8007 | 260–340 | 19.0 ± 0.6 | 6.5 ± 1.0 | 1.10 | ||||
Western Mare | 2501 | 200–340 | 16.7 ± 0.6 | 3.2 ± 0.6 | 1.45 | ||||
Southern Mare 1 | 5760 | 170–350 | 18.3 ± 0.7 | 6.2 ± 1.0 | 1.34 | ||||
Southern Mare 2 | 3569 | 16.6 ± 1.0 | 3.2 ± 0.5 | ||||||
Northern Mare | 176 | 13.1 ± 0.8 | 2.2 ± 0.5 | ||||||
Southeastern Mare | 457 | 18.0 ± 0.6 | 6.2 ± 0.9 | ||||||
References | [21] | [22] | [21] | [36] | [20] | [42] | [21] | [21] | This study |
3.3. Iron and Th Abundance
3.4. Crustal Thickness
4. Discussion
4.1. Taking the Apollo Basin as an Example to Evaluate Mare Basalt Genesis Models
4.2. Implications for Laboratory Investigations of Chang’E-6 Mare Basalt Samples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Head, J.W.; Wilson, L.; Hiesinger, H.; van der Bogert, C.; Chen, Y.; Dickson, J.L.; Gaddis, L.R.; Haruyama, J.; Jawin, E.R.; Jozwiak, L.M.; et al. Lunar Mare Basaltic Volcanism: Volcanic Features and Emplacement Processes. Rev. Mineral. Geochem. 2023, 89, 453–507. [Google Scholar] [CrossRef]
- Whitten, J.; Head, J.W. Lunar cryptomaria: Mineralogy and composition of ancient volcanic deposits. Planet. Space Sci. 2015, 106, 67–81. [Google Scholar] [CrossRef]
- Head, J.W., III. Lunar volcanism in space and time. Rev. Geophys. 1976, 14, 265–300. [Google Scholar] [CrossRef]
- Head, J.W.; Wilson, L. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus 2017, 283, 176–223. [Google Scholar] [CrossRef]
- Wilson, L.; Head, J.W., III. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. Solid Earth 1981, 86, 2971–3001. [Google Scholar] [CrossRef]
- Wilson, L.; Head, J.W. Controls on Lunar Basaltic Volcanic Eruption Structure and Morphology: Gas Release Patterns in Sequential Eruption Phases. Geophys. Res. Lett. 2018, 45, 5852–5859. [Google Scholar] [CrossRef]
- Head, J.W.; Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 1992, 56, 2155–2175. [Google Scholar] [CrossRef]
- Joy, K.H.; Arai, T. Lunar meteorites: New insights into the geological history of the Moon. Astron. Geophys. 2013, 54, 4.28–4.32. [Google Scholar] [CrossRef]
- Nyquist, L.E.; Shih, C.Y. The isotopic record of lunar volcanism. Geochim.Cosmochim. Acta 1992, 56, 2213–2234. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W., III; Wolf, U.; Jaumann, R.; Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. Planets 2003, 108, 5065. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W., III; Wolf, U.; Jaumann, R.; Neukum, G. Ages and stratigraphy of lunar mare basalts: A synthesis. In Recent Advances and Current Research Issues in Lunar Stratigraphy; Ambrose, W.A., Williams, D.A., Eds.; Geological Society of America: Boulder, CO, USA, 2011. [Google Scholar]
- Hallis, L.J.; Anand, M.; Strekopytov, S. Trace-element modelling of mare basalt parental melts: Implications for a heterogeneous lunar mantle. Geochim. Cosmochim. Acta 2014, 134, 289–316. [Google Scholar] [CrossRef]
- Neal, C.R.; Taylor, L.A. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta 1992, 56, 2177–2211. [Google Scholar] [CrossRef]
- Qian, Y.; She, Z.; He, Q.; Xiao, L.; Wang, Z.; Head, J.W.; Sun, L.; Wang, Y.; Wu, B.; Wu, X.; et al. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat. Astron. 2023, 7, 287–297. [Google Scholar] [CrossRef]
- Sato, H.; Robinson, M.S.; Lawrence, S.J.; Denevi, B.W.; Hapke, B.; Jolliff, B.L.; Hiesinger, H. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 2017, 296, 216–238. [Google Scholar] [CrossRef]
- Shearer, C.K.; Hess, P.C.; Wieczorek, M.A.; Pritchard, M.E.; Parmentier, E.M.; Borg, L.E.; Longhi, J.; Elkins-Tanton, L.T.; Neal, C.R.; Antonenko, I.; et al. Thermal and Magmatic Evolution of the Moon. Rev. Mineral. Geochem. 2006, 60, 365–518. [Google Scholar] [CrossRef]
- Potter, R.W.K.; Head, J.W.; Guo, D.; Liu, J.; Xiao, L. The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole–Aitken basin. Icarus 2018, 306, 139–149. [Google Scholar] [CrossRef]
- Wang, X.; Head, J.W.; Qian, Y.; Zhao, W.; Liu, J.; Gao, Y.; Wu, B. Possible Lithological Types and Scientific Significance of the Sample to be Returned by Chang’E-6 Mission. In Proceedings of the 55th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 11–15 March 2024; p. 1873. [Google Scholar]
- Ivanov, M.A.; Hiesinger, H.; van der Bogert, C.H.; Orgel, C.; Pasckert, J.H.; Head, J.W. Geologic History of the Northern Portion of the South Pole-Aitken Basin on the Moon. J. Geophys. Res. Planets 2018, 123, 2585–2612. [Google Scholar] [CrossRef]
- Pasckert, J.H.; Hiesinger, H.; van der Bogert, C.H. Lunar farside volcanism in and around the South Pole–Aitken basin. Icarus 2018, 299, 538–562. [Google Scholar] [CrossRef]
- Qian, Y.; Head, J.; Michalski, J.; Wang, X.; van der Bogert, C.H.; Hiesinger, H.; Sun, L.; Yang, W.; Xiao, L.; Li, X.; et al. Long-lasting farside volcanism in the Apollo basin: Chang’e-6 landing site. Earth Planet. Sci. Lett. 2024, 637, 118737. [Google Scholar] [CrossRef]
- Taguchi, M.; Morota, T.; Kato, S. Lateral heterogeneity of lunar volcanic activity according to volumes of mare basalts in the farside basins. J. Geophys. Res. Planets 2017, 122, 1505–1521. [Google Scholar] [CrossRef]
- Meyer, C. Lunar Sample Compendium. 2009. Available online: https://ntrs.nasa.gov/api/citations/20090041867/downloads/20090041867.pdf (accessed on 5 September 2024).
- Li, C.; Hu, H.; Yang, M.-F.; Pei, Z.-Y.; Zhou, Q.; Ren, X.; Liu, B.; Liu, D.; Zeng, X.; Zhang, G.; et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 2021, 9, nwab188. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Jackson, G.B.; Cavanaugh, J.F.; Neumann, G.A.; Riris, H.; Sun, X.; Zellar, R.S.; Coltharp, C.; Connelly, J.; et al. The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission. Space Sci. Rev. 2010, 150, 209–241. [Google Scholar] [CrossRef]
- Sato, H.; Hapke, B.; Robinson, M.S. New Extended Range WAC TiO2 Map of the Moon. In Proceedings of the 52nd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 15–19 March 2021; p. 1031. [Google Scholar]
- Lawrence, D.J.; Feldman, W.C.; Elphic, R.C.; Little, R.C.; Prettyman, T.H.; Maurice, S.; Lucey, P.G.; Binder, A.B. Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. Planets 2002, 107, 5130. [Google Scholar] [CrossRef]
- Prettyman, T.H.; Hagerty, J.J.; Elphic, R.C.; Feldman, W.C.; Lawrence, D.J.; McKinney, G.W.; Vaniman, D.T. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets 2006, 111, E12007. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Elphic, R.C.; Feldman, W.C.; Prettyman, T.H.; Gasnault, O.; Maurice, S. Small-area thorium features on the lunar surface. J. Geophys. Res. Planets 2003, 108, 5102. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Watkins, M.M.; Asmar, S.W.; Konopliv, A.S.; Lemoine, F.G.; Melosh, H.J.; Neumann, G.A.; Phillips, R.J.; Solomon, S.C.; et al. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science 2013, 339, 668–671. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Neumann, G.A.; Nimmo, F.; Kiefer, W.S.; Taylor, G.J.; Melosh, H.J.; Phillips, R.J.; Solomon, S.C.; Andrews-Hanna, J.C.; Asmar, S.W.; et al. The Crust of the Moon as Seen by GRAIL. Science 2013, 339, 671–675. [Google Scholar] [CrossRef]
- Hiesinger, H.; van der Bogert, C.H.; Pasckert, J.H.; Schmedemann, N.; Robinson, M.S.; Jolliff, B.; Petro, N. New Crater Size-Frequency Distribution Measurements of the South Pole-Aitken Basin. In Proceedings of the 43rd Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012; p. 2863. [Google Scholar]
- Orgel, C.; Michael, G.; Fassett, C.I.; van der Bogert, C.H.; Riedel, C.; Kneissl, T.; Hiesinger, H. Ancient Bombardment of the Inner Solar System: Reinvestigation of the “Fingerprints” of Different Impactor Populations on the Lunar Surface. J. Geophys. Res. Planets 2018, 123, 748–762. [Google Scholar] [CrossRef]
- Moriarty III, D.P.; Pieters, C.M. The Character of South Pole-Aitken Basin: Patterns of Surface and Subsurface Composition. J. Geophys. Res. Planets 2018, 123, 729–747. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, D.; Chen, Y.; Zhou, Q.; Ren, X.; Zhang, Z.; Yan, W.; Chen, W.; Wang, Q.; Deng, X.; et al. Landing site of the Chang’e-6 lunar farside sample return mission from the Apollo basin. Nat. Astron. 2023, 7, 1188–1197. [Google Scholar] [CrossRef]
- Yingst, R.A.; Head, J.W., III. Volumes of lunar lava ponds in South Pole-Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions. J. Geophys. Res. Planets 1997, 102, 10909–10931. [Google Scholar] [CrossRef]
- Hiesinger, H.; Jaumann, R.; Neukum, G.; Head, J.W., III. Ages of mare basalts on the lunar nearside. J. Geophys. Res. Planets 2000, 105, 29239–29275. [Google Scholar] [CrossRef]
- Kodama, S.; Yamaguchi, Y. Mare Volcanism on the Moon Inferred from Clementine UVVIS Data. In Proceedings of the 36th Annual Lunar and Planetary Science Conference, League City, TX, USA, 14–18 March 2005; p. 1641. [Google Scholar]
- Morota, T.; Haruyama, J.; Ohtake, M.; Matsunaga, T.; Honda, C.; Yokota, Y.; Kimura, J.; Ogawa, Y.; Hirata, N.; Demura, H.; et al. Timing and characteristics of the latest mare eruption on the Moon. Earth Planet. Sci. Lett. 2011, 302, 255–266. [Google Scholar] [CrossRef]
- Pieters, C.M.; Head, J.W.; Adams, J.B.; McCord, T.B.; Zisk, S.H.; Whitford-Stark, J.L. Late high-titanium basalts of the Western Maria: Geology of the Flamsteed REgion of Oceanus Procellarum. J. Geophys. Res. Solid Earth 1980, 85, 3913–3938. [Google Scholar] [CrossRef]
- Yue, Z.; Gou, S.; Sun, S.; Yang, W.; Chen, Y.; Wang, Y.; Lin, H.; Di, K.; Lin, Y.; Li, X.; et al. Geological context of the Chang’E-6 landing area and implications for sample analysis. Innov. 2024, 5, 100663. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Phillips, R.J. The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 2000, 105, 20417–20430. [Google Scholar] [CrossRef]
- Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R. Thorium abundances of basalt ponds in South Pole-Aitken basin: Insights into the composition and evolution of the far side lunar mantle. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Naito, M.; Hasebe, N.; Nagaoka, H.; Wöhler, C.; Berezhnoy, A.A.; Bhatt, M.; Kim, K.J. Potassium and Thorium Abundances at the South Pole-Aitken Basin Obtained by the Kaguya Gamma-Ray Spectrometer. J. Geophys. Res. Planets 2019, 124, 2347–2358. [Google Scholar] [CrossRef]
- Solomon, S.C. Mare Volcanism and Lunar Crustal Structure. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1975; p. 762. [Google Scholar]
- Wieczorek, M.A.; Zuber, M.T.; Phillips, R.J. The role of magma buoyancy on the eruption of lunar basalts. Earth Planet. Sci. Lett. 2001, 185, 71–83. [Google Scholar] [CrossRef]
- Whitten, J.; Head, J.W.; Staid, M.; Pieters, C.M.; Mustard, J.; Clark, R.; Nettles, J.; Klima, R.L.; Taylor, L. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. Planets 2011, 116, E00G09. [Google Scholar] [CrossRef]
- Jones, A.P.; Price, G.D.; Price, N.J.; DeCarli, P.S.; Clegg, R.A. Impact induced melting and the development of large igneous provinces. Earth Planet. Sci. Lett. 2002, 202, 551–561. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T.; Hager, B.H. Giant meteoroid impacts can cause volcanism. Earth Planet. Sci. Lett. 2005, 239, 219–232. [Google Scholar] [CrossRef]
- Guo, D.; Bao, Y.; Liu, Y.; Wu, X.; Xu, Y.; Yang, Y.; Zhang, F.; Jolliff, B.; Li, S.; Zhao, Z.; et al. Geological investigation of the lunar Apollo basin: From surface composition to interior structure. Earth Planet. Sci. Lett. 2024, 646, 118986. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. Planets 2000, 105, 4197–4216. [Google Scholar] [CrossRef]
- Che, X.; Nemchin, A.; Liu, D.; Long, T.; Wang, C.; Norman, M.D.; Joy, K.H.; Tartese, R.; Head, J.; Jolliff, B.; et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’E-5. Science 2021, 374, 887–890. [Google Scholar] [CrossRef]
- Li, Q.-L.; Zhou, Q.; Liu, Y.; Xiao, Z.; Lin, Y.; Li, J.-H.; Ma, H.-X.; Tang, G.-Q.; Guo, S.; Tang, X.; et al. Two-billion-year-old volcanism on the Moon from Chang’E-5 basalts. Nature 2021, 600, 54–58. [Google Scholar] [CrossRef]
- Ziethe, R.; Seiferlin, K.; Hiesinger, H. Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages. Planet. Space Sci. 2009, 57, 784–796. [Google Scholar] [CrossRef]
- Charlier, B.; Grove, T.L.; Namur, O.; Holtz, F. Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon. Geochim. Cosmochim. Acta 2018, 234, 50–69. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T.; Burgess, S.; Yin, Q.-Z. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 2011, 304, 326–336. [Google Scholar] [CrossRef]
- Haupt, C.P.; Renggli, C.J.; Rohrbach, A.; Berndt, J.; Klemme, S. Experimental Constraints on the Origin of the Lunar High-Ti Basalts. J. Geophys. Res. Planets 2024, 129, e2023JE008239. [Google Scholar] [CrossRef]
- Hess, P.C.; Parmentier, E.M. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 1995, 134, 501–514. [Google Scholar] [CrossRef]
- Lin, Y.; Tronche, E.J.; Steenstra, E.S.; van Westrenen, W. Experimental constraints on the solidification of a nominally dry lunar magma ocean. Earth Planet. Sci. Lett. 2017, 471, 104–116. [Google Scholar] [CrossRef]
- Rapp, J.F.; Draper, D.S. Fractional crystallization of the lunar magma ocean: Updating the dominant paradigm. Meteorit. Planet. Sci. 2018, 53, 1432–1455. [Google Scholar] [CrossRef]
- Snyder, G.A.; Taylor, L.A.; Neal, C.R. A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 1992, 56, 3809–3823. [Google Scholar] [CrossRef]
- Xu, M.; Jing, Z.; Van Orman, J.A.; Yu, T.; Wang, Y. Experimental Evidence Supporting an Overturned Iron-Titanium-Rich Melt Layer in the Deep Lunar Interior. Geophys. Res. Lett. 2022, 49, e2022GL099066. [Google Scholar] [CrossRef]
- McGovern, P.J.; Litherland, M.M. Loading Stresses and Magma Ascent In and Around Large Lunar Impact Basins: Scenarios for the Emplacement of Mare Basalts. In Proceedings of the 41st Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; p. 2724. [Google Scholar]
- Solomon, S.C.; Head, J.W. Vertical movement in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history. J. Geophys. Res. Solid Earth 1979, 84, 1667–1682. [Google Scholar] [CrossRef]
- Zhang, N.; Ding, M.; Zhu, M.-H.; Li, H.; Li, H.; Yue, Z. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nat. Geosci. 2022, 15, 37–41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Yin, C.; Li, J.; Zhang, J.; Chi, S.; Chen, J.; Li, B. Mare Volcanism in Apollo Basin Evaluating the Mare Basalt Genesis Models on the Moon. Remote Sens. 2024, 16, 4078. https://doi.org/10.3390/rs16214078
Fu X, Yin C, Li J, Zhang J, Chi S, Chen J, Li B. Mare Volcanism in Apollo Basin Evaluating the Mare Basalt Genesis Models on the Moon. Remote Sensing. 2024; 16(21):4078. https://doi.org/10.3390/rs16214078
Chicago/Turabian StyleFu, Xiaohui, Chengxiang Yin, Jin Li, Jiang Zhang, Siyue Chi, Jian Chen, and Bo Li. 2024. "Mare Volcanism in Apollo Basin Evaluating the Mare Basalt Genesis Models on the Moon" Remote Sensing 16, no. 21: 4078. https://doi.org/10.3390/rs16214078
APA StyleFu, X., Yin, C., Li, J., Zhang, J., Chi, S., Chen, J., & Li, B. (2024). Mare Volcanism in Apollo Basin Evaluating the Mare Basalt Genesis Models on the Moon. Remote Sensing, 16(21), 4078. https://doi.org/10.3390/rs16214078