Estimating Rainfall Anomalies with IMERG Satellite Data: Access via the IPE Web Application
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. IMERG Precipitation Data
2.3. NOAA Station Data
3. Methods
3.1. Computing Annual Maximum Series (AMS) from IMERG Data
3.2. Calculating Rainfall Anomaly Index from Both IMERG and NOAA Datasets
3.3. Evaluation Metrics
4. Results
4.1. Comparing Time Variability Between IMERG and NOAA Station RAI Indices
4.2. Relationship Between Rainfall Anomaly and Maximum Depth
4.3. Regional Attribution of IMERG Precipitation Anomalies
4.3.1. IMERG RAI Index Assessment in Nevada (Dry Western CONUS)
4.3.2. Evaluation of IMERG RAI Index in the High-Rainfall Region of Louisiana
4.4. Spatial Evaluation and Hydrological Utility of IMERG RAI Index
4.5. Trend in Rainfall Anomaly in CONUS and Climate Change Implications
4.6. IMERG Precipitation Extractor (IPE): History, Potentials, and Use Cases
5. Discussions
5.1. Significance of IMERG-Derived RAI for Climate Change Applications
5.2. Possibilities, Limitations, and Uncertainties in IMERG Data
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gil-Alana, L.A.; Gupta, R.; Sauci, L.; Carmona-González, N. Temperature and Precipitation in the US States: Long Memory, Persistence, and Time Trend. Theor. Appl. Climatol. 2022, 150, 1731–1744. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Patricola, C.M.; Winter, J.M.; Osterberg, E.C.; Mankin, J.S. Rise in Northeast US Extreme Precipitation Caused by Atlantic Variability and Climate Change. Weather Clim. Extrem. 2021, 33, 100351. [Google Scholar] [CrossRef]
- Adeel, Z.; Bakkensen, L.; Cabrera-Rivera, O.; Franco, E.; Garfin, G.M.; McPherson, R.A.; Méndez, K.; Wen, X. Challenges in and Opportunities for International Collaboration: Costing Flood Damages and Losses across Canada, Mexico, and the United States. Bull. Am. Meteorol. Soc. 2023, 104, E1323–E1332. [Google Scholar] [CrossRef]
- Ahn, J.; Cho, W.; Kim, T.; Shin, H.; Heo, J.-H. Flood Frequency Analysis for the Annual Peak Flows Simulated by an Event-Based Rainfall-Runoff Model in an Urban Drainage Basin. Water 2014, 6, 3841–3863. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban Flood Hazard Assessment in the Basin of Athens Metropolitan City, Greece. Environ. Earth Sci. 2016, 75, 319. [Google Scholar] [CrossRef]
- Corringham, T.W.; McCarthy, J.; Shulgina, T.; Gershunov, A.; Cayan, D.R.; Ralph, F.M. Climate Change Contributions to Future Atmospheric River Flood Damages in the Western United States. Sci. Rep. 2022, 12, 13747. [Google Scholar] [CrossRef]
- Devitt, L.; Neal, J.; Wagener, T.; Coxon, G. Uncertainty in the Extreme Flood Magnitude Estimates of Large-Scale Flood Hazard Models. Environ. Res. Lett. 2021, 16, 064013. [Google Scholar] [CrossRef]
- Gabriels, K.; Willems, P.; Van Orshoven, J. A Comparative Flood Damage and Risk Impact Assessment of Land Use Changes. Nat. Hazards Earth Syst. Sci. 2022, 22, 395–410. [Google Scholar] [CrossRef]
- Quinn, N.; Bates, P.D.; Neal, J.; Smith, A.; Wing, O.; Sampson, C.; Smith, J.; Heffernan, J. The Spatial Dependence of Flood Hazard and Risk in the United States. Water Resour. Res. 2019, 55, 1890–1911. [Google Scholar] [CrossRef]
- Ekpetere, K.; Ekeh, F.; Ofodum, N. Impact of Abattoir Wastes on Groundwater Quality in the Fct, Abuja-Nigeria: A Case Study of Gwagwalada Satellite Town. J. Environ. Earth Sci. 2019, 9, 90–104. [Google Scholar] [CrossRef]
- Armal, S.; Khanbilvardi, R. Anomalies in the US Precipitation Extremes and Their Association with Different Modes of Climate Variability. Hydrol. Sci. J. 2019, 64, 1605–1615. [Google Scholar] [CrossRef]
- Córdova, M.; Célleri, R.; van Delden, A. Dynamics of Precipitation Anomalies in Tropical South America. Atmosphere 2022, 13, 972. [Google Scholar] [CrossRef]
- Baratto, J.; de Bodas Terassi, P.M.; de Beserra de Lima, N.G.; Galvani, E. Precipitation Anomalies and Trends Estimated via Satellite Rainfall Products in the Cananeia–Iguape Coastal System, Southeast Region of Brazil. Climate 2024, 12, 22. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Y.; Wu, Y.; Gao, C. Change Patterns of Precipitation Anomalies and Possible Teleconnections with Large-Scale Climate Oscillations over the Yangtze River Delta, China. J. Water Clim. Chang. 2022, 13, 2972–2990. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Pei, L.; Bian, X.; Heilman, W.E. Contribution of Large-Scale Circulation Anomalies to Changes in Extreme Precipitation Frequency in the United States. Environ. Res. Lett. 2016, 11, 044003. [Google Scholar] [CrossRef]
- Singh, J.; Karmakar, S.; PaiMazumder, D.; Ghosh, S.; Niyogi, D. Urbanization Alters Rainfall Extremes over the Contiguous United States. Environ. Res. Lett. 2020, 15, 074033. [Google Scholar] [CrossRef]
- Bonnin, G.; Martin, D.; Lin, B.; Parzybok, T.; Yekta, M.; Riley, D. Precipitation-Frequency Atlas of the United States. Technical Document of the U.S. Department of Commerce. 2006; Volume 1, Version 5.0; pp. 1–271. Available online: https://geodesy.noaa.gov/library/pdfs/NOAA_Atlas_0014_Vol_0001.pdf (accessed on 25 August 2024).
- Miller, J.F.; Frederick, R.H.; Tracey, R.J. Precipitation-Frequency Atlas of the Western United States. Technical Document of the U.S. Department of Commerce. 1973; Volumes 5–6, pp. 1–47. Available online: https://www.geoplatform.gov/metadata/2fa115e7-e1ac-41eb-9d29-657f38b40f37 (accessed on 25 August 2024).
- NOAA. NOAA Atlas 14 Time Series Data of Annual Maximum Precipitation. Technical Document of the U.S. Department of Commerce. 2017; Volume 12, Version 2.0; pp. 1–328. Available online: https://www.weather.gov/media/owp/oh/hdsc/docs/Atlas14_Volume12.pdf (accessed on 25 August 2024).
- Perica, S.; Lin, B.; Martin, D.; Martin, F.; Brewer, D.; Trypaluk, C.; Yekta, M.; Hiner, L.; Heim, S.; Dietz, S.; et al. NOAA Atlas 14 Precipitation-Frequency Atlas of the United States. Technical Document of the U.S. Department of Commerce. 2011; Volume 6, Version 2.3; pp. 1–241. Available online: https://repository.library.noaa.gov/view/noaa/22614 (accessed on 25 August 2024).
- NOAA-OWP. NOAA ATLAS 15: Update to the National Precipitation Frequency Standard 2022. Technical Document of the U.S. Department of Commerce. Volume 1, Version 1; pp. 1–22. Available online: https://www.weather.gov/media/owp/hdsc_documents/NOAA_Atlas_15_Flyer.pdf (accessed on 25 August 2024).
- Perica, S.; Martin, D.; Pavlovic, S.; Roy, I.; St. Laurent, M.; Trypaluk, C.; Unruh, D.; Yekta, M.; Bonnin, G. Precipitation-Frequency Atlas of the United States 2013. Technical Document of the U.S. Department of Commerce. Volume 9, Version 2; pp. 1–171. Available online: https://www.weather.gov/media/owp/oh/hdsc/docs/Atlas14_Volume9.pdf (accessed on 25 August 2024).
- Palmer, W. Meteorological Drought. Research Paper No. 45. 1965. Available online: https://www.droughtmanagement.info/literature/USWB_Meteorological_Drought_1965.pdf (accessed on 25 August 2024).
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Mckee, T.; Doesken, N.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. 1993, pp. 179–184. Available online: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (accessed on 25 August 2024).
- Raziei, T. Revisiting the Rainfall Anomaly Index to Serve as a Simplified Standardized Precipitation Index. J. Hydrol. 2021, 602, 126761. [Google Scholar] [CrossRef]
- Van-rooy, M.P. A Rainfall Anomaly Index (RAI), Independent of the Time and Space. Notos. 1965, Volume 14, pp. 43–48. Available online: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2321398 (accessed on 25 August 2024).
- Costa, J.; Rodrigues, G. Space-Time Distribution of Rainfall Anomaly Index (RAI) for the Salgado Basin, Ceará State-Brazil. Ciên. Nat. 2017, 39, 627–634. [Google Scholar] [CrossRef]
- Koudahe, K.; Kayode, A.J.; Samson, A.O.; Adebola, A.A.; Djaman, K. Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmos. Clim. Sci. 2017, 7, 401–423. [Google Scholar] [CrossRef]
- Arias, P.A.; Fu, R.; Mo, K.C. Decadal Variation of Rainfall Seasonality in the North American Monsoon Region and Its Potential Causes. J. Clim. 2012, 25, 4258–4274. [Google Scholar] [CrossRef]
- Gu, L.; Yin, J.; Gentine, P.; Wang, H.-M.; Slater, L.J.; Sullivan, S.C.; Chen, J.; Zscheischler, J.; Guo, S. Large Anomalies in Future Extreme Precipitation Sensitivity Driven by Atmospheric Dynamics. Nat. Commun. 2023, 14, 3197. [Google Scholar] [CrossRef]
- Lau, A.; Behrangi, A. Understanding Intensity–Duration–Frequency (IDF) Curves Using IMERG Sub-Hourly Precipitation against Dense Gauge Networks. Remote Sens. 2022, 14, 5032. [Google Scholar] [CrossRef]
- Noor, M.; Ismail, T.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Evaluating Intensity-Duration-Frequency (IDF) Curves of Satellite-Based Precipitation Datasets in Peninsular Malaysia. Atmos. Res. 2021, 248, 105203. [Google Scholar] [CrossRef]
- Ekpetere, K. Assessment of the PMPs and Design Storms Estimated from the IMERG Satellite Precipitation Data. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2024. [Google Scholar]
- Alamri, N.; Subyani, A. Generation of Rainfall Intensity Duration Frequency (IDF) Curves for Ungauged Sites in Arid Region. Earth Syst. Environ. 2017, 1, 8. [Google Scholar] [CrossRef]
- De Paola, F.; Giugni, M.; Topa, M.E.; Bucchignani, E. Intensity-Duration-Frequency (IDF) Rainfall Curves, for Data Series and Climate Projection in African Cities. SpringerPlus 2014, 3, 133. [Google Scholar] [CrossRef] [PubMed]
- Duque-Gardeazabal, N.; Rodríguez, E.A. Improving Rainfall Fields in Data-Scarce Basins: Influence of the Kernel Bandwidth Value of Merging on Hydrometeorological Modeling. J. Hydrol. Eng. 2023, 28, 04023017. [Google Scholar] [CrossRef]
- Kim, D.-E.; Gourbesville, P.; Liong, S.-Y. Overcoming Data Scarcity in Flood Hazard Assessment Using Remote Sensing and Artificial Neural Network. Smart Water 2019, 4, 2. [Google Scholar] [CrossRef]
- Tan, M.L.; Yang, X. Effect of Rainfall Station Density, Distribution and Missing Values on SWAT Outputs in Tropical Region. J. Hydrol. 2020, 584, 124660. [Google Scholar] [CrossRef]
- Willems, P. Stochastic Generation of Spatial Rainfall for Urban Drainage Areas. Water Sci. Technol. 1999, 39, 23–30. [Google Scholar] [CrossRef]
- Willems, P. Compound Intensity/Duration/Frequency-Relationships of Extreme Precipitation for Two Seasons and Two Storm Types. J. Hydrol. 2000, 233, 189–205. [Google Scholar] [CrossRef]
- Ekpetere, K.; Abdelkader, M.; Ishaya, S.; Makwe, E.; Ekpetere, P. Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region. Hydrology 2023, 10, 78. [Google Scholar] [CrossRef]
- Chen, J.; Liao, J.; Lou, Y.; Ma, S.; Shen, G.; Zhang, L. High-Resolution Datasets for Lake Level Changes in the Qinghai-Tibetan Plateau from 2002 to 2021 Using Multi-Altimeter Data. Earth Syst. Sci. Data Discuss. 2022, 1–18. [Google Scholar] [CrossRef]
- Gu, H.; Ma, Z.; Li, M. Effect of a Large and Very Shallow Lake on Local Summer Precipitation over the Lake Taihu Basin in China. J. Geophys. Res. Atmos. 2016, 121, 8832–8848. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global Gridded Precipitation over Land: A Description of the New GPCC First Guess Daily Product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative Water Loss of 1.42 Million Global Lakes. Nat. Commun. 2022, 13, 3686. [Google Scholar] [CrossRef]
- Kasi, V.; Rathinasamy, M.; Jarajapu, D. Framework for Developing IDF Curves Using Satellite Precipitation: A Case Study Using GPM-IMERG V6 Data. Earth Sci. Inform. 2022, 15, 671–687. [Google Scholar] [CrossRef]
- Mab, P.; Ly, S.; Chompuchan, C.; Kositsakulchai, E. Evaluation of Satellite Precipitation from Google Earth Engine in Tonle Sap Basin, Cambodia. 2019. Available online: https://irre.ku.ac.th/pubart/pdf/2019PhanitMab.pdf (accessed on 25 August 2024).
- Aksu, H.; Taflan, G.Y.; Yaldiz, S.G.; Akgül, M.A. Evaluation of IMERG for GPM Satellite-Based Precipitation Products for Extreme Precipitation Indices over Turkiye. Atmos. Res. 2023, 291, 106826. [Google Scholar] [CrossRef]
- Huffman Algorithm Theoretical Basis Document (ATBD) Version 06 of NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) 2020. Technical Document of the National Aeronautics and Space Administration (NASA). Volume 6, Version 6; pp. 1–39. Available online: https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf (accessed on 25 August 2024).
- Ning, S.; Song, F.; Udmale, P.; Jin, J.; Thapa, B.R.; Ishidaira, H. Error Analysis and Evaluation of the Latest GSMap and IMERG Precipitation Products over Eastern China. Adv. Meteorol. 2017, 2017, 1803492. [Google Scholar] [CrossRef]
- Pucknell, S.; Kjeldsen, T.; Haxton, T.; Jeans, J.; Young, A. Estimating the Probable Maximum Flood in UK Catchments Using the ReFH Model. Dams Reserv. 2020, 30, 85–90. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance Evaluation of Latest Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) over the Northern Highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Dehaghani, A.M.; Gohari, A.; Zareian, M.J.; Torabi Haghighi, A. A Comprehensive Evaluation of the Satellite Precipitation Products across Iran. J. Hydrol. Reg. Stud. 2023, 46, 101360. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Anjum, M.N.; Gao, Y. Performance Evaluation of Version 5 (V05) of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) over the Tianshan Mountains of China. Water 2019, 11, 1139. [Google Scholar] [CrossRef]
- Wang, J.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021, 13, 1745. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, C.; Zhao, X.; Zhang, Q.; Su, J. Evaluation of the GPM IMERG Product at the Hourly Timescale over China. Atmos. Res. 2023, 285, 106656. [Google Scholar] [CrossRef]
- Weng, P.; Tian, Y.; Jiang, Y.; Chen, D.; Kang, J. Assessment of GPM IMERG and GSMaP Daily Precipitation Products and Their Utility in Droughts and Floods Monitoring across Xijiang River Basin. Atmos. Res. 2023, 286, 106673. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of Hydrological Utility of IMERG Final Run V05 and TMPA 3B42V7 Satellite Precipitation Products in the Yellow River Source Region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, B.; Yang, S.; Huang, Y.; Dong, G.; Bai, J.; Wang, Z. Systematical Estimation of GPM-Based Global Satellite Mapping of Precipitation Products over China. Atmos. Res. 2018, 201, 206–217. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, D.; Yong, B.; Shen, Z.; Wu, H.; Yu, L. Evaluation of GPM-IMERG Precipitation Product at Multiple Spatial and Sub-Daily Temporal Scales over Mainland China. Remote Sens. 2023, 15, 1237. [Google Scholar] [CrossRef]
- Peinó, E.; Bech, J.; Udina, M. Dependence of GPM IMERG Products on Precipitation Intensity in Catalonia. In Proceedings of the 25th EGU General Assembly, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- Sathianarayanan, M.; Hsu, P.-H. Spatial downscaling of gpm imerg v06 gridded precipitation using machine learning algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 327–332. [Google Scholar] [CrossRef]
- Tang, S.; Li, R.; He, J.; Wang, H.; Fan, X.; Yao, S. Comparative Evaluation of the GPM IMERG Early, Late, and Final Hourly Precipitation Products Using the CMPA Data over Sichuan Basin of China. Available online: https://doaj.org (accessed on 12 February 2021).
- Xin, Y.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Yin, C. Evaluation of IMERG and ERA5 Precipitation Products over the Mongolian Plateau. Sci. Rep. 2022, 12, 21776. [Google Scholar] [CrossRef] [PubMed]
- Nasta, P.; Allocca, C.; Deidda, R.; Romano, N. Assessing the Impact of Seasonal-Rainfall Anomalies on Catchment-Scale Water Balance Components. Hydrol. Earth Syst. Sci. 2020, 24, 3211–3227. [Google Scholar] [CrossRef]
- Henny, L.; Thorncroft, C.D.; Bosart, L.F. Changes in Seasonal Large-Scale Extreme Precipitation in the Mid-Atlantic and Northeast United States, 1979–2019. J. Clim. 2023, 36, 1017–1042. [Google Scholar] [CrossRef]
- Le, P.V.V.; Randerson, J.T.; Willett, R.; Wright, S.; Smyth, P.; Guilloteau, C.; Mamalakis, A.; Foufoula-Georgiou, E. Climate-Driven Changes in the Predictability of Seasonal Precipitation. Nat. Commun. 2023, 14, 3822. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Webber, B.G.M.; Matthews, A.J.; Feist, M.M.; Stein, T.H.M.; Holloway, C.E.; Abdullah, M.F.A.B. Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data. Earth Space Sci. 2021, 8, e2021EA001738. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR Satellite Precipitation Products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- National Weather Service. HDSC PMP Documents. Available online: https://www.weather.gov/owp/hdsc_pmp (accessed on 22 June 2022).
- Gill, S.K.; Weston, N.D.; Smith, D.A. NOAA Guidance Document for Determination of Vertical Land Motion at Water Level Stations Using GPS Technology. 2015. Available online: https://repository.library.noaa.gov/view/noaa/12599 (accessed on 25 August 2024).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Lu, D.; Young, B. Evaluation and Hydrological Utility of the Latest GPM IMERG V5 and GSMaP V7 Precipitation Products over the Tibetan Plateau. Remote Sens. 2018, 10, 2022. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Kirstetter, P.-E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To What Extent Is the Day 1 GPM IMERG Satellite Precipitation Estimate Improved as Compared to TRMM TMPA-RT? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar] [CrossRef]
- Gao, P.; Carbone, G.J.; Lu, J.; Guo, D. An Area-Based Approach for Estimating Extreme Precipitation Probability. Geogr. Anal. 2018, 50, 314–333. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, H.; Yin, Y.; Hu, C.; Yin, J.; Ma, X.; Wang, J. Interpreting Rainfall Anomalies Using Rainfall’s Nonnegative Nature. Geophys. Res. Lett. 2019, 46, 426–434. [Google Scholar] [CrossRef]
- Guo, B.; Xu, T.; Yang, Q.; Zhang, J.; Dai, Z.; Deng, Y.; Zou, J. Multiple Spatial and Temporal Scales Evaluation of Eight Satellite Precipitation Products in a Mountainous Catchment of South China. Remote Sens. 2023, 15, 1373. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early Assessment of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Huff, F.A. Time Distribution of Rainfall in Heavy Storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Stavish, M. Using Standard Anomaly and Ensemble Data to Support Forecast Confidence of an Extreme Wind Event in the Pacific Northwest on 14–15 December 2006. Technical Document of the U.S. National Weather Service Medford, Oregon. 2007; Volume 1, Version 1; pp. 1–8. Available online: https://www.weather.gov/media/wrh/online_publications/talite/talite0702.pdf (accessed on 25 August 2024).
- Zaveri, E.; Russ, J.; Damania, R. Rainfall Anomalies Are a Significant Driver of Cropland Expansion. Proc. Natl. Acad. Sci. USA 2020, 117, 10225–10233. [Google Scholar] [CrossRef]
- LaRocque, A. Probable Maximum Flood (PMF). In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 777–778. ISBN 978-1-4020-4399-4. [Google Scholar]
- VDCR Probable Maximum Precipitation Study and Evaluation Tool (Virginia Department of Conservation and Recreation). Available online: https://www.dcr.virginia.gov/dam-safety-and-floodplains/pmp-tool (accessed on 1 November 2021).
- Zischg, A.P.; Felder, G.; Weingartner, R.; Quinn, N.; Coxon, G.; Neal, J.; Freer, J.; Bates, P. Effects of Variability in Probable Maximum Precipitation Patterns on Flood Losses. Hydrol. Earth Syst. Sci. 2018, 22, 2759–2773. [Google Scholar] [CrossRef]
- Boota, M.W.; Nabi, G.; Abbas, T.; Yaseen, M.; Faisal, M.; Azam, M.I. Estimation of Probable Maximum Flood (PMF): A Case Study of Pothwar Region, Pakistan. Int. J. Sci. Res. Eng. Dev. 2015, 2, 6471–6475. [Google Scholar]
- Fashae, O.; Jolaade, O.; Olusola, A. An Assessment of Digital Elevation Model for Geospatial Studies: A Case Study of Alawa Town, Niger State, Nigeria. Ife Res. Publ. Geogr. 2017, 15, 31–51. [Google Scholar]
- Trinh, T.; Diaz, A.; Iseri, Y.; Snider, E.; Anderson, M.L.; Carr, K.J.; Kavvas, M.L. A Numerical Coupled Atmospheric–Hydrologic Modeling System for Probable Maximum Flood Estimation with Application to California’s Southern Sierra Nevada Foothills Watersheds. J. Flood Risk Manag. 2022, 15, e12809. [Google Scholar] [CrossRef]
- Pan, L.-L.; Chen, S.-H.; Cayan, D.; Lin, M.-Y.; Hart, Q.; Zhang, M.-H.; Liu, Y.; Wang, J. Influences of Climate Change on California and Nevada Regions Revealed by a High-Resolution Dynamical Downscaling Study. Clim. Dyn. 2011, 37, 2005–2020. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, P.; Gautam, M.R.; Zhang, Y.; Acharya, K. Changes of Seasonal Storm Properties in California and Nevada from an Ensemble of Climate Projections. J. Geophys. Res. Atmos. 2015, 120, 2676–2688. [Google Scholar] [CrossRef]
- Hoell, A.; Quan, X.-W.; Hoerling, M.; Diaz, H.F.; Fu, R.; He, C.; Lisonbee, J.R.; Mankin, J.S.; Seager, R.; Sheffield, A.; et al. Water Year 2021 Compound Precipitation and Temperature Extremes in California and Nevada. Bull. Am. Meteorol. Soc. 2022, 103, E2905–E2911. [Google Scholar] [CrossRef]
- Byrne, S.M.; Merrifield, M.A.; Carter, M.L.; Cayan, D.R.; Flick, R.E.; Gershunov, A.; Giddings, S.N. Southern California Winter Precipitation Variability Reflected in 100-Year Ocean Salinity Record. Commun. Earth Environ. 2023, 4, 143. [Google Scholar] [CrossRef]
- DeFlorio, M.J.; Sengupta, A.; Castellano, C.M.; Wang, J.; Zhang, Z.; Gershunov, A.; Guirguis, K.; Niño, R.L.; Clemesha, R.E.S.; Pan, M.; et al. From California’s Extreme Drought to Major Flooding: Evaluating and Synthesizing Experimental Seasonal and Subseasonal Forecasts of Landfalling Atmospheric Rivers and Extreme Precipitation during Winter 2022/23. Bull. Am. Meteorol. Soc. 2024, 105, 84–104. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, L.; Liu, Q.; Chyi, D. Environmental Factors Controlling the Precipitation in California. Atmosphere 2021, 12, 997. [Google Scholar] [CrossRef]
- Zhang, G.; Su, X.; Singh, V.P.; Ayantobo, O.O. Appraising Standardized Moisture Anomaly Index (SZI) in Drought Projection across China under CMIP6 Forcing Scenarios. J. Hydrol. Reg. Stud. 2021, 37, 100898. [Google Scholar] [CrossRef]
- Gavahi, K.; Abbaszadeh, P.; Moradkhani, H. How Does Precipitation Data Influence the Land Surface Data Assimilation for Drought Monitoring? Sci. Total Environ. 2022, 831, 154916. [Google Scholar] [CrossRef]
- Tibbetts, J. Louisiana’s Wetlands: A Lesson in Nature Appreciation. Environ. Health Perspect. 2006, 114, A40–A43. [Google Scholar] [CrossRef]
- Brown, V.M.; Keim, B.D.; Kappel, W.D.; Hultstrand, D.M.; Peyrefitte, A.G.; Black, A.W.; Steinhilber, K.M.; Muhlestein, G.A. How Rare Was the August 2016 South-Central Louisiana Heavy Rainfall Event? J. Hydrometeorol. 2020, 21, 773–790. [Google Scholar] [CrossRef]
- Faiers, G.E.; Grymes, J.M.; Keim, B.D.; Muller, R.A. A Reexamination of Extreme 24-Hour Rainfall in Louisiana, USA. Clim. Res. 1994, 4, 25–31. [Google Scholar] [CrossRef]
- Ekpetere, K.; Li, X.; Frame, J. Metadata for the Rapid Forcing Retrieval (RFR) Web Tool. Technical Document. 2022, Volume 1, Version 1. p. 1. Available online: https://doi.org/10.4211/hs.60e32ac396044582b0ef9f976d3e4a29 (accessed on 25 August 2024).
- Felder, G.; Paquet, E.; Penot, D.; Zischg, A.; Weingartner, R. Consistency of Extreme Flood Estimation Approaches. J. Hydrol. Eng. 2019, 24, 04019018. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Applications of TRMM- and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sens. 2019, 11, 140. [Google Scholar] [CrossRef]
- Gershunov, A.; Shulgina, T.; Clemesha, R.E.S.; Guirguis, K.; Pierce, D.W.; Dettinger, M.D.; Lavers, D.A.; Cayan, D.R.; Polade, S.D.; Kalansky, J.; et al. Precipitation Regime Change in Western North America: The Role of Atmospheric Rivers. Sci. Rep. 2019, 9, 9944. [Google Scholar] [CrossRef] [PubMed]
- McKitrick, R.; Christy, J. Assessing Changes in US Regional Precipitation on Multiple Time Scales. J. Hydrol. 2019, 578, 124074. [Google Scholar] [CrossRef]
- Kappel, B. PMP Estimation for Mine Tailings Dams in Data Limited Regions. In Sustainable and Safe Dams Around the World; Tournier, J.-P., Bennett, T., Bibeau, J., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 3170–3182. ISBN 978-0-429-31977-8. [Google Scholar]
- Umar, N.; Gray, A. Flooding in Nigeria: A Review of Its Occurrence and Impacts and Approaches to Modelling Flood Data. Int. J. Environ. Stud. 2023, 80, 540–561. [Google Scholar] [CrossRef]
- Li, N.; Tang, G.; Zhao, P.; Hong, Y.; Gou, Y.; Yang, K. Statistical Assessment and Hydrological Utility of the Latest Multi-Satellite Precipitation Analysis IMERG in Ganjiang River Basin. Atmos. Res. 2017, 183, 212–223. [Google Scholar] [CrossRef]
- Wu, X.; Su, J.; Ren, W.; Lü, H.; Yuan, F. Statistical Comparison and Hydrological Utility Evaluation of ERA5-Land and IMERG Precipitation Products on the Tibetan Plateau. J. Hydrol. 2023, 620, 129384. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.-M.; Tang, Q. Can IMERG Data Capture the Scaling of Precipitation Extremes With Temperature at Different Time Scales? Geophys. Res. Lett. 2022, 49, e2021GL096392. [Google Scholar] [CrossRef]
- Li, R.; Guilloteau, C.; Kirstetter, P.-E.; Foufoula-Georgiou, E. How Well Does the IMERG Satellite Precipitation Product Capture the Timing of Precipitation Events? J. Hydrol. 2023, 620, 129563. [Google Scholar] [CrossRef]
- Gabric, O.; Prodanovic, D.; Plavsic, J. Uncertainty Assessment of Rainfall Simulator Uniformity Coefficient. In Međunarodna Konferencija Savremena Dostignuća u Građevinarstvu 25; Građevinski Fakultet: Subotica, Serbia, 2014; Volume 30, pp. 661–668. [Google Scholar]
- Ekpetere, K.O.; Mehta, A.V.; Coll, J.M.; Liang, C.; Onochie, S.O.; Ekpetere, M.C. Extreme Rainfall Anomalies Based on IMERG Remote Sensing Data in CONUS: A Multi-Decade Case Study via the IPE Web Application. Preprints 2024. [Google Scholar] [CrossRef]
- Ekpetere, K.O.; Coll, J.M. A Hybrid Probability Model for Extreme Precipitation Event Analysis: Application to Imerg-Gpm and Validation Against Atlas-14 in Conus. SSRN Databases. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4948328 (accessed on 25 October 2024).
- Tran, T.-N.-D.; Le, M.-H.; Zhang, R.; Nguyen, B.Q.; Bolten, J.D.; Lakshmi, V. Robustness of Gridded Precipitation Products for Vietnam Basins Using the Comprehensive Assessment Framework of Rainfall. Atmos. Res. 2023, 293, 106923. [Google Scholar] [CrossRef]
Characteristics | NOAA Station Data | IMERG Satellite Data |
---|---|---|
Spatial Resolution | ≥200 m (varies) | 0.1° (~11 km) |
Temporal Resolution | 5-min to 60 days | Half-hourly |
Period | 2001–2022 | 2001–2022 |
Sensor(s) | Rain gages | GMI and DPR |
Area Coverage | CONUS | Global |
Calibration | Gage | TRMM, TMPA, and GPCC |
Ownership | NOAA | NASA and JAXA |
Reference | [20] | [51] |
RAI | Class Description |
---|---|
≥3.00 | Extremely wet |
2.00 to 2.99 | Very wet |
1.00 to 1.99 | Moderately wet |
0.50 to 0.99 | Slightly wet |
−0.49 to 0.49 | Near normal |
−0.99 to −0.50 | Slightly dry |
−1.99 to −1.00 | Moderately dry |
−2.99 to −2.00 | Very dry |
≤−3.00 | Extremely dry |
Statistics | Formula | Range | Optimal Value | Unit |
---|---|---|---|---|
Correlation Coefficient (CC) | −1 to 1 | 1 | Unitless | |
Percentage Relative Bias (PRB) | −∞ to +∞ | 0 | % | |
Root Mean Square Error (RMSE) | 0 to +∞ | 0 | Unitless | |
Mean Bias Ratio (MBR) | 0 to 1 | 1 | Unitless | |
Nash–Sutcliffe Efficiency (NSE) | 0 to 1 | 1 | Unitless | |
Kling–Gupta Efficiency (KGE) | −∞ to 1 | 1 | Unitless |
Year | CC | PRB (%) | RMSE | MBR | NSE | KGE |
---|---|---|---|---|---|---|
2001 | 0.93 | −15.29 | 0.94 | 0.85 | 0.79 | 0.63 |
2002 | 0.94 | −17.09 | 0.92 | 0.83 | 0.81 | 0.63 |
2003 | 0.94 | −4.40 | 1.00 | 0.96 | 0.78 | 0.62 |
2004 | 0.92 | −46.61 | 1.07 | 0.53 | 0.77 | 0.42 |
2005 | 0.94 | −67.37 | 0.92 | 0.33 | 0.85 | 0.28 |
2006 | 0.93 | −23.30 | 0.93 | 0.77 | 0.79 | 0.58 |
2007 | 0.94 | −14.19 | 0.97 | 0.86 | 0.81 | 0.65 |
2008 | 0.93 | −77.50 | 1.01 | 0.23 | 0.79 | 0.16 |
2009 | 0.93 | −15.90 | 0.95 | 0.84 | 0.79 | 0.61 |
2010 | 0.93 | −84.24 | 1.01 | 0.16 | 0.79 | 0.09 |
2011 | 0.94 | −12.18 | 0.98 | 0.88 | 0.80 | 0.64 |
2012 | 0.94 | −14.30 | 0.88 | 0.86 | 0.84 | 0.70 |
2013 | 0.94 | −17.97 | 0.94 | 0.82 | 0.82 | 0.63 |
2014 | 0.94 | −15.18 | 0.93 | 0.85 | 0.81 | 0.64 |
2015 | 0.94 | 9.06 | 0.97 | 1.00 | 0.83 | 0.69 |
2016 | 0.94 | −4.16 | 0.96 | 0.96 | 0.81 | 0.67 |
2017 | 0.94 | −2.67 | 0.97 | 0.97 | 0.81 | 0.67 |
2018 | 0.94 | 1.05 | 0.98 | 1.00 | 0.77 | 0.60 |
2019 | 0.93 | −15.13 | 0.93 | 0.85 | 0.79 | 0.61 |
2020 | 0.94 | 62.83 | 1.00 | 1.00 | 0.80 | 0.29 |
2021 | 0.93 | −85.50 | 1.01 | 0.15 | 0.80 | 0.08 |
2022 | 0.94 | −30.92 | 0.92 | 0.69 | 0.86 | 0.64 |
Min | 0.92 | −85.50 | 0.88 | 0.15 | 0.77 | 0.08 |
Max | 0.94 | 62.83 | 1.07 | 1.00 | 0.86 | 0.70 |
Std. Dev. | 0.00 | 33.70 | 0.04 | 0.28 | 0.02 | 0.20 |
Mean | 0.94 | −22.32 | 0.96 | 0.74 | 0.80 | 0.52 |
ID | Lat | Lon | CC | PRB | RMSE | MBR | NSE | KGE |
---|---|---|---|---|---|---|---|---|
269234 | 40.4344 | −95.3883 | 0.95 | 41.29 | 0.91 | 1.00 | 0.84 | 0.50 |
269171 | 40.0825 | −93.6086 | 0.96 | 83.92 | 0.84 | 1.00 | 0.88 | 0.12 |
268988 | 37.2333 | −91.8833 | 0.95 | 273.52 | 1.12 | 1.00 | 0.78 | −1.76 |
268977 | 38.9483 | −94.3969 | 0.93 | −124.83 | 1.02 | 0.00 | 0.78 | −0.30 |
268838 | 37.7119 | −91.1328 | 0.96 | 13.50 | 0.77 | 1.00 | 0.90 | 0.74 |
268822 | 38.2017 | −91.9811 | 0.96 | 37.02 | 0.94 | 1.00 | 0.84 | 0.50 |
268170 | 36.9231 | −90.2836 | 0.94 | −31.74 | 0.95 | 0.68 | 0.77 | 0.52 |
267908 | 38.5425 | −90.9719 | 0.92 | −10.15 | 1.10 | 0.90 | 0.77 | 0.63 |
267640 | 36.8581 | −92.5875 | 0.98 | 6.47 | 0.65 | 1.00 | 0.92 | 0.77 |
267620 | 38.8128 | −90.8561 | 0.95 | −46.70 | 0.89 | 0.53 | 0.84 | 0.45 |
267612 | 36.7425 | −91.8347 | 0.95 | 183.83 | 0.83 | 1.00 | 0.86 | −0.86 |
267397 | 42.5522 | −99.8556 | 0.94 | 38.71 | 0.98 | 1.00 | 0.80 | 0.48 |
267369 | 42.2342 | −98.9156 | 0.96 | −39.67 | 0.89 | 0.60 | 0.85 | 0.50 |
266630 | 41.5975 | −99.8258 | 0.93 | −41.01 | 1.03 | 0.59 | 0.77 | 0.44 |
265880 | 42.0686 | −102.584 | 0.95 | 56.82 | 0.93 | 1.00 | 0.83 | 0.35 |
265869 | 41.2481 | −98.7989 | 0.97 | −22.74 | 0.75 | 0.77 | 0.90 | 0.67 |
265441 | 42.5800 | −99.54 | 0.96 | −28.89 | 0.92 | 0.71 | 0.84 | 0.57 |
265362 | 40.2994 | −96.75 | 0.95 | 3.95 | 0.94 | 1.00 | 0.82 | 0.66 |
265191 | 41.3686 | −96.095 | 0.98 | 64.55 | 0.59 | 1.00 | 0.94 | 0.33 |
264651 | 41.0469 | −102.147 | 0.94 | −43.67 | 1.11 | 0.56 | 0.76 | 0.40 |
Min | 0.92 | −124.83 | 0.59 | 0.00 | 0.76 | −1.76 | ||
Max | 0.98 | 273.52 | 1.12 | 1.00 | 0.94 | 0.77 | ||
Std. Dev. | 0.02 | 87.26 | 0.14 | 0.26 | 0.05 | 0.61 | ||
Mean | 0.95 | 20.71 | 0.91 | 0.82 | 0.83 | 0.29 |
ID | Lat | Lon | CC | PRB | RMSE | MBR | NSE | KGE |
---|---|---|---|---|---|---|---|---|
169803 | 41.0333 | −81.0167 | 0.95 | 9.90 | 0.80 | 1.00 | 0.88 | 0.74 |
169357 | 41.4619 | −84.5272 | 0.94 | −37.68 | 1.09 | 0.62 | 0.78 | 0.47 |
168539 | 41.4667 | −81.1667 | 0.94 | −49.55 | 1.03 | 0.50 | 0.80 | 0.40 |
168440 | 40.0167 | −81.5833 | 0.93 | −11.48 | 0.81 | 0.89 | 0.83 | 0.70 |
168067 | 40.7667 | −81.3833 | 0.87 | 24.54 | 0.99 | 1.00 | 0.72 | 0.57 |
167932 | 40.3000 | −82.65 | 0.94 | 32.04 | 0.92 | 1.00 | 0.82 | 0.55 |
167738 | 40.7400 | −82.3569 | 0.93 | −16.59 | 0.83 | 0.83 | 0.82 | 0.68 |
166978 | 39.3744 | −83.0036 | 0.96 | 422.46 | 0.82 | 1.00 | 0.87 | −3.23 |
166664 | 38.7983 | −84.1731 | 0.93 | −90.27 | 1.11 | 0.10 | 0.77 | 0.03 |
166660 | 41.0517 | −81.9361 | 0.93 | −40.84 | 1.13 | 0.59 | 0.76 | 0.43 |
166582 | 39.1000 | −84.5167 | 0.95 | 5.43 | 0.84 | 1.00 | 0.85 | 0.71 |
166394 | 39.6106 | −82.9547 | 0.94 | −80.95 | 1.04 | 0.19 | 0.77 | 0.11 |
166324 | 41.4050 | −81.8528 | 0.92 | 354.06 | 1.16 | 1.00 | 0.74 | −2.56 |
166305 | 40.8833 | −80.6833 | 0.92 | −36.52 | 1.12 | 0.63 | 0.75 | 0.47 |
166244 | 39.9914 | −82.8808 | 0.93 | −28.00 | 0.83 | 0.72 | 0.82 | 0.61 |
165620 | 41.9833 | −80.5667 | 0.91 | −13.79 | 1.02 | 0.86 | 0.75 | 0.61 |
165266 | 39.9061 | −84.2186 | 0.95 | 55.69 | 0.83 | 1.00 | 0.86 | 0.39 |
165078 | 39.6253 | −83.2128 | 0.97 | 12.62 | 0.83 | 1.00 | 0.89 | 0.72 |
164816 | 41.2833 | −84.3833 | 0.94 | −17.11 | 0.77 | 0.83 | 0.84 | 0.68 |
164700 | 40.0000 | −82.0833 | 0.90 | 2.44 | 1.15 | 1.00 | 0.72 | 0.59 |
Min | 0.87 | −90.27 | 0.77 | 0.10 | 0.72 | −3.23 | ||
Max | 0.97 | 422.46 | 1.16 | 1.00 | 0.89 | 0.74 | ||
Std. Dev. | 0.02 | 129.73 | 0.14 | 0.27 | 0.05 | 1.08 | ||
Mean | 0.93 | 24.82 | 0.96 | 0.79 | 0.80 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekpetere, K.O.; Mehta, A.V.; Coll, J.M.; Liang, C.; Onochie, S.O.; Ekpetere, M.C. Estimating Rainfall Anomalies with IMERG Satellite Data: Access via the IPE Web Application. Remote Sens. 2024, 16, 4137. https://doi.org/10.3390/rs16224137
Ekpetere KO, Mehta AV, Coll JM, Liang C, Onochie SO, Ekpetere MC. Estimating Rainfall Anomalies with IMERG Satellite Data: Access via the IPE Web Application. Remote Sensing. 2024; 16(22):4137. https://doi.org/10.3390/rs16224137
Chicago/Turabian StyleEkpetere, Kenneth Okechukwu, Amita V. Mehta, James Matthew Coll, Chen Liang, Sandra Ogugua Onochie, and Michael Chinedu Ekpetere. 2024. "Estimating Rainfall Anomalies with IMERG Satellite Data: Access via the IPE Web Application" Remote Sensing 16, no. 22: 4137. https://doi.org/10.3390/rs16224137
APA StyleEkpetere, K. O., Mehta, A. V., Coll, J. M., Liang, C., Onochie, S. O., & Ekpetere, M. C. (2024). Estimating Rainfall Anomalies with IMERG Satellite Data: Access via the IPE Web Application. Remote Sensing, 16(22), 4137. https://doi.org/10.3390/rs16224137