Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management
Abstract
:1. Introduction
2. Historical Development of Remote Sensing for Lake Water Quality
3. Advanced Remote Sensing Techniques for Water Quality Prediction
3.1. Lake Water Quality Parameters
Parameter | Data Source | Spectral Bands | Ref. | Evaluation Metrics | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | A | B | C | D | E | F | G | H | I | J | K | L | R2 | RMSE | MAE | ||
Chl-a | √ | √ | √ | √ | √ | √ | [72] | 0.62 | ||||||||||||||||
√ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [89] | 0.71 | 6160 µg/L | 4970 µg/L | |||||||||||
√ | √ | √ | √ | √ | [73] | 0.71 | 0.8 µg/L | |||||||||||||||||
√ | √ | √ | √ | √ | [74] | 0.90 | 70 µg/L | |||||||||||||||||
√ | √ | √ | [75] | 0.40 | 0.34 | |||||||||||||||||||
√ | √ | √ | √ | √ | √ | [76] | 0.56 | 15.2 µg/L | ||||||||||||||||
√ | √ | √ | [79] | 0.37 | ||||||||||||||||||||
√ | √ | √ | √ | √ | √ | √ | √ | √ | [110] | 0.99 | 0.34 µg/L | 0.07 µg/L | ||||||||||||
√ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [70] | 0.92 | |||||||||||
3 | 1 | 5 | 1 | 3 | 1 | 0 | 1 | 0 | 1 | 7 | 9 | 8 | 3 | 7 | 3 | 3 | 2 | 0 | 0 | |||||
Turbidity | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [89] | 0.82 | 2.05 NTU | 1.10 NTU | ||||||||||
√ | √ | √ | √ | √ | [87] | 0.88 | 9.90 NTU | 6.71 NTU | ||||||||||||||||
√ | √ | √ | [79] | 0.92 | ||||||||||||||||||||
√ | √ | √ | √ | √ | √ | [92] | 0.99 | 0.31 NTU | ||||||||||||||||
√ | √ | √ | √ | √ | √ | [69] | 0.99 | |||||||||||||||||
1 | 0 | 3 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 2 | 5 | 4 | 2 | 3 | 2 | 3 | 1 | 0 | 0 | |||||
CDOM | √ | √ | √ | √ | [94] | 0.81 | ||||||||||||||||||
√ | √ | √ | √ | [95] | 0.55 | 0.04 mg/L | ||||||||||||||||||
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
Water Temp. | √ | √ | √ | [97] | 0.95 | 1.66 °C | ||||||||||||||||||
√ | √ | √ | [66] | 0.90 | 0.10 °C | |||||||||||||||||||
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | |||||
Lake Water Level | √ | √ | √ | [105] | 0.93 | |||||||||||||||||||
√ | √ | √ | √ | √ | √ | [106] | 1.00 | 1.06 m | ||||||||||||||||
√ | √ | √ | √ | √ | [103] | |||||||||||||||||||
1 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 2 | 3 | 0 | 2 | 1 | 1 | 0 | 1 | 1 | |||||
Lake Surface Area | √ | √ | √ | √ | √ | √ | [98] | mIoU = 74% | ||||||||||||||||
√ | √ | √ | √ | √ | [99] | |||||||||||||||||||
√ | √ | √ | √ | √ | √ | [100] | 0.88 | 38.45 km² | ||||||||||||||||
0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 0 | 3 | 3 | 3 | 0 | 3 | 0 | 1 | 0 | 0 | 0 |
3.2. Remote Sensing Platforms
3.3. Spectral Indices for Water Quality Assessment
4. Advanced Machine Learning Methods for Water Quality Prediction
5. Integration of Machine Learning and Remote Sensing
6. Challenges and Future Direction of Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shivaraju, V.M. Faunal Diversity of Durgadahalli Lake of Tumakuru, Karnataka State, India. J. Environ. Stud. 2021, 7, 6. [Google Scholar] [CrossRef]
- Cai, Y.; Dong, R.; Kattel, G.; Zhang, Y.; Peng, K.; Gong, Z. Macroinvertebrate diversity and ecosystem functioning across the eutrophication gradients of the middle and lower reaches of Yangtze River lakes (China). Ecol. Evol. 2023, 13, e9751. [Google Scholar] [CrossRef] [PubMed]
- The Canadian Encyclopedia. Geography of Ontario. Available online: https://www.thecanadianencyclopedia.ca/en/article/geography-of-ontario (accessed on 30 June 2024).
- Great Lakes Fishery Commission. The Great Lakes Fishery. Available online: https://www.glfc.org/the-fishery.php (accessed on 25 June 2024).
- Schirpke, U.; Scolozzi, R.; Tappeiner, U. Not too small to benefit society: Insights into perceived cultural ecosystem services of mountain lakes in the European Alps. Ecol. Soc. 2022, 7, 1. [Google Scholar] [CrossRef]
- Jabbari, A.; Ackerman, J.; Boegman, L.; Zhao, Y. Increases in Great Lake winds and extreme events facilitate interbasin coupling and reduce water quality in Lake Erie. Sci. Rep. 2021, 11, 5733. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; Seglenieks, F.; Temgoua, A.; Dehghan, A. The Impacts of Climate Change on Land Hydroclimatology of the Laurentian Great Lakes Basin. Front. Water 2022, 4, 801134. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Tan, C.; Xue, L.; Bukovsky, M.; Qi, Z. Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada. Agric. Syst. 2021, 190, 103110. [Google Scholar] [CrossRef]
- Austin, J.C. America’s North Coast: A Benefit-Cost Analysis of a Program to Protect and Restore the Great Lakes; Brookings Institution: Washington, DC, USA, 2007. [Google Scholar]
- Jiang, B.; Mitsch, W.; Lenhart, C. Estimating the Importance of Hydrologic Conditions on Nutrient Retention and Plant Richness in a Wetlaculture Mesocosm Experiment in a Former Lake Erie Basin Swamp. Water 2021, 13, 2509. [Google Scholar] [CrossRef]
- Smith, R.B.; Bass, B.; Sawyer, D.; Depew, D.; Watson, S.B. Estimating the economic costs of algal blooms in the Canadian Lake Erie Basin. Harmful Algae 2019, 87, 101624. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 2009, 54 Pt 2, 2349–2358. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Mitchell, S.F. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshw. Biol. 1997, 38, 159–168. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Ruhl, H.A.; Rybicki, N.B. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat. Proc. Natl. Acad. Sci. USA 2010, 107, 16566–16570. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, P.; Suresh, M.A.; Venkatasubramanian, N. Augmenting In-Situ with Mobile Sensing for Adaptive Monitoring of Water Distribution Networks. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, Montreal, QC, Canada, 16–18 April 2019; pp. 151–162. [Google Scholar]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-quality classification of inland lakes using Landsat8 images by convolutional neural networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef]
- Schindler, D.W. Whole-ecosystem experiments: Replication versus realism: The need for ecosystem-scale experiments. Ecosystems 1998, 1, 323–334. [Google Scholar] [CrossRef]
- Ellison, R.; Slocum, D. High Spatial Resolution Mapping of Water Quality and Bathymetry with a Person-Deployable, Low-Cost Autonomous Underwater Vehicle. In Proceedings of the OCEANS, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–7. [Google Scholar]
- Babitsch, D.; Berger, E.; Sundermann, A. Linking environmental with biological data: Low sampling frequencies of chemical pollutants and nutrients in rivers reduce the reliability of model results. Sci. Total Environ. 2021, 772, 145498. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. IEEE Trans. Geosci. Remote Sens. 1979, GE-17, 126–144. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE 2012, 7, e42444. [Google Scholar] [CrossRef] [PubMed]
- Dekker, A.G.; Peters, S.W. The use of the thematic mapper for the analysis of eutrophic lakes: A case study in the Netherlands. Int. J. Remote Sens. 1993, 14, 799–821. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kondratyev, K.Y. Optical models of mesotrophic and eutrophic water bodies. Int. J. Remote Sens. 1991, 12, 603–615. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake dissolved organic matter (DOM) by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Thoreson, B.D. Remote Sensing of Water Quality in Prairie Lakes. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 1975. [Google Scholar]
- Alföldi, T.T.; Munday, J.C., Jr. Water quality analysis by digital chromaticity mapping of Landsat data. Can. J. Remote Sens. 1978, 4, 108–126. [Google Scholar] [CrossRef]
- Hergenrader, G.L. Application of Remote Sensing in the Determination of Water Quality in Nebraska Reservoirs; NASA Contractor Report No. NASA-CR-148776; NASA: Washington, DC, USA, 1976. [Google Scholar]
- Zhang, B.; Zhang, B.; Hong, M.; Duan, H.T.; Song, K.S.; Wang, Z.M. Advance in remote sensing of lake water quality. Adv. Water Sci. 2007, 18, 301–310. [Google Scholar]
- Ritchie, J.; Zimba, P.; Everitt, J. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Härmä, P.; Vepsäläinen, J.; Hannonen, T.; Pyhälahti, T.; Kämäri, J.; Kallio, K.; Eloheimo, K.; Koponen, S. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Sci. Total Environ. 2001, 268, 107–121. [Google Scholar] [CrossRef]
- Doerffer, R.; Sørensen, K.; Aiken, J. MERIS potential for coastal zone applications. Int. J. Remote Sens. 1999, 20, 1809–1818. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Villa, P.; Martinelli, A. Application of remote sensing in water resource management: The case study of Lake Trasimeno, Italy. Water Resour. Manag. 2010, 24, 3885–3899. [Google Scholar] [CrossRef]
- Hoogenboom, H.; Dekker, A. Simulation of the medium-resolution imaging spectrometer (MERIS) performance for detecting chlorophyll-a over turbid inland waters. SPIE 1997, 2963, 440–447. [Google Scholar] [CrossRef]
- Shen, F.; Verhoef, W. Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration. Opt. Express 2010, 18, 12653–12662. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, S.; Zhou, Y.; Yan, F.; Zhou, W. Water Quality Monitoring in Taihu Lake Using MODIS Image Data. In Proceedings of the IGARSS 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 4, pp. 2314–2317. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Ammenberg, P.; Flink, P.; Lindell, T.; Pierson, D.; Strombeck, N. Bio-optical modelling combined with remote sensing to assess water quality. Int. J. Remote Sens. 2002, 23, 1621–1638. [Google Scholar] [CrossRef]
- Pierson, D.; Strömbeck, N. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model. Sci. Total Environ. 2001, 268, 171–188. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Lu, S.; Tian, Y.Q.; Zhou, Q.; Shi, K. Remote Sensing Estimation of Chlorophyll-a Concentration for Optically Complex Waters Using Machine Learning Methods—A Case Study of Lake Erie, USA. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8984–8996. [Google Scholar]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Cao, Y.; Ye, Y.; Zhao, H.; Jiang, Y.; Wang, H.; Shang, Y.; Wang, J. Remote sensing of water quality based on HJ-1A HSI imagery. Ecol. Inform. 2018, 44, 21–32. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Shi, K.; Zhang, Y.; Li, N.; Wang, W.; Huang, X.; Qin, B. Monitoring water quality using proximal remote sensing technology. Sci. Total Environ. 2021, 803, 149805. [Google Scholar] [CrossRef] [PubMed]
- Wiangwang, N.; Qi, J. Water Quality Assessment Using Hyperspectral Remote Sensing. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’05), Seoul, Republic of Korea, 29 July 2005; Volume 7, pp. 4531–4534. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Fabbretto, A.; Pellegrino, A.; Mangano, S.; Free, G.; Pinardi, M. Application of new hyperspectral sensors in the remote sensing of aquatic ecosystem health. Resources 2022, 11, 8. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Wu, J.; Huang, X.; Xu, N.; Zhu, Q.; Zorn, C.; Guo, W.; Yu, C. Combining Satellite Imagery and a Deep Learning Algorithm to Retrieve the Water Levels of Small Reservoirs. Remote Sens. 2023, 15, 5740. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qiao, Q.; Tavares, A.; Liang, Y. Water quality prediction based on machine learning and comprehensive weighting methods. Entropy 2023, 25, 1186. [Google Scholar] [CrossRef]
- Schindler, D.W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 2001, 58, 18–29. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Davies, P.M. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Lin, C.; Ma, R.; Cao, Z. Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef]
- Dong, L.; Gong, C.; Wang, X.; Wang, Y.; He, D.; Hu, Y.; Li, L.; Yang, Z. Seasonal Monitoring Method for TN and TP Based on Airborne Hyperspectral Remote Sensing Images. Remote Sens. 2024, 16, 1614. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Cen, Y.; Wang, S.; Zhang, Y.; Huang, Y.; Sultan, M.; Tong, Q. Prediction of Total Phosphorus Concentration in Macrophytic Lakes Using Chlorophyll-Sensitive Bands: A Case Study of Lake Baiyangdian. Remote Sens. 2022, 14, 3077. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.J.; Zhu, X.; Tian, S.; Wang, B. Spatiotemporal variation reconstruction of total phosphorus in the Great Lakes since 2002 using remote sensing and deep neural network. Water Res. 2024, 255, 121493. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C.; Zhu, Y. Lake surface water temperature prediction and changing characteristics analysis-A case study of 11 natural lakes in Yunnan-Guizhou Plateau. J. Clean. Prod. 2020, 276, 122689. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, R.; Li, J.; Hua, Z.; Wang, J.; Zhang, R.; Liang, Y.; Tang, Y. Remote sensing retrieval of total nitrogen in the Pearl River Delta based on Landsat8. Water 2022, 14, 3710. [Google Scholar] [CrossRef]
- Wang, J.; Shi, T.; Yu, D.; Teng, D.; Ge, X.; Zhang, Z.; Yang, X.; Wang, H.; Wu, G. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environ. Pollut. 2020, 266, 115412. [Google Scholar] [CrossRef]
- Japitana, M.; Burce, M.E. A Satellite-based Remote Sensing Technique for Surface Water Quality Estimation. Eng. Technol. Appl. Sci. Res. 2019, 9, 3965–3970. [Google Scholar] [CrossRef]
- Batur, E.; Maktav, D. Assessment of Surface Water Quality by Using Satellite Images Fusion Based on PCA Method in the Lake Gala, Turkey. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2983–2989. [Google Scholar] [CrossRef]
- Pereira, O.J.R.; Merino, E.R.; Montes, C.; Barbiero, L.; Rezende-Filho, A.T.; Lucas, Y.; Melfi, A.J. Remote sensing Estimating Water pH Using Cloud-Based Landsat Images for a New Classification of the Nhecolândia Lakes (Brazilian Pantanal). Remote Sens. 2020, 12, 1090. [Google Scholar] [CrossRef]
- Yin, Z.; Li, J.; Zhang, B.; Liu, Y.; Yan, K.; Gao, M.; Xie, Y.; Zhang, F.; Wang, S. Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations. Sci. Total Environ. 2023, 873, 162168. [Google Scholar] [CrossRef] [PubMed]
- Mozafari, Z.; Noori, R.; Siadatmousavi, S.M.; Afzalimehr, H.; Azizpour, J. Satellite-based monitoring of eutrophication in the earth’s largest transboundary lake. GeoHealth 2023, 7, e2022GH000770. [Google Scholar] [CrossRef] [PubMed]
- Kupssinskü, L.S.; Guimarães, T.T.; de Souza, E.M.; Zanotta, D.C.; Veronez, M.R.; Gonzaga, L.; Mauad, F.F. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors 2020, 20, 2125. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ishizaka, J.; Goes, J.; Gomes, H.; Maúre, E.; Hayashi, M.; Katano, T.; Fujii, N.; Saitoh, K.; Mine, T.; et al. Improved MODIS-Aqua Chlorophyll-a Retrievals in the Turbid Semi-Enclosed Ariake Bay, Japan. Remote Sens. 2018, 10, 1335. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Gao, W.; Zhang, Y.; Hou, X. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Environ. Sci. Pollut. Res. 2023, 30, 83628–83642. [Google Scholar] [CrossRef]
- Lu, L.; Gong, Z.; Liang, Y.; Liang, S. Retrieval of Chlorophyll-a Concentrations of Class II Water Bodies of Inland Lakes and Reservoirs Based on ZY1-02D Satellite Hyperspectral Data. Remote Sens. 2022, 14, 1842. [Google Scholar] [CrossRef]
- Avdan, Z.Y.; Kaplan, G.; Goncu, S.; Avdan, U. Monitoring the water quality of small water bodies using high-resolution remote sensing data. ISPRS Int. J. Geo-Inf. 2019, 8, 553. [Google Scholar] [CrossRef]
- Assar, W. Retrieval of Chlorophyll-a and vegetation indices Using Sentinel-2 MSI Imagery in El-Burullus Lake, Egypt. SVU-Int. J. Eng. Sci. Appl. 2024, 5, 79–88. [Google Scholar] [CrossRef]
- Shi, J.; Shen, Q.; Yao, Y.; Li, J.; Chen, F.; Wang, R.; Xu, W.; Gao, Z.; Wang, L. Estimation of Chlorophyll-a Concentrations in Small Water Bodies: Comparison of Fused Gaofen-6 and Sentinel-2 Sensors. Remote Sens. 2022, 14, 229. [Google Scholar] [CrossRef]
- Shi, X.; Gu, L.; Jiang, T.; Zheng, X.; Dong, W.; Tao, Z. Retrieval of Chlorophyll-a Concentrations Using Sentinel-2 MSI Imagery in Lake Chagan Based on Assessments with Machine Learning Models. Remote Sens. 2022, 14, 4924. [Google Scholar] [CrossRef]
- Wang, D.; Tang, B.; Fu, Z.-G.; Huang, L.; Li, M.; Chen, G.; Pan, X. Estimation of Chlorophyll-A Concentration with Remotely Sensed Data for the Nine Plateau Lakes in Yunnan Province. Remote Sens. 2022, 14, 4950. [Google Scholar] [CrossRef]
- Wu, C.; Fu, X.; Li, H.; Hu, H.; Li, X.; Zhang, L. A Method Based on Improved Ant Colony Algorithm Feature Selection Combined With GA-SVR Model for Predicting Chlorophyll-a Concentration in Ulansuhai Lake. IEEE Access 2023, 11, 93180–93192. [Google Scholar] [CrossRef]
- Barraza-Moraga, F.; Alcayaga, H.; Pizarro, A.; Félez-Bernal, J.; Urrutia, R. Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sens. 2022, 14, 5647. [Google Scholar] [CrossRef]
- Pershin, S.; Katsnelson, B.; Grishin, M.; Lednev, V.; Zavozin, V.A.; Ostrovsky, I. Laser Remote Sensing of Lake Kinneret by Compact Fluorescence LiDAR. Sensors 2022, 22, 7307. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote sensing of turbidity for lakes in northeast China using Sentinel-2 images with machine learning algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9132–9146. [Google Scholar] [CrossRef]
- Sakuno, Y.; Yajima, H.; Yoshioka, Y.; Sugahara, S.; Abd Elbasit, M.A.; Adam, E.; Chirima, J.G. Evaluation of unified algorithms for remote sensing of chlorophyll-a and turbidity in lake Shinji and lake Nakaumi of Japan and the Vaal Dam reservoir of South Africa under eutrophic and ultra-turbid conditions. Water 2018, 10, 618. [Google Scholar] [CrossRef]
- Villota-González, F.H.; Sulbarán-Rangel, B.; Zurita-Martínez, F.; Gurubel-Tun, K.J.; Zúñiga-Grajeda, V. Assessment of Machine Learning Models for Remote Sensing of Water Quality in Lakes Cajititlán and Zapotlán, Jalisco—Mexico. Remote Sens. 2023, 15, 5505. [Google Scholar] [CrossRef]
- Pamula, A.; Gholizadeh, H.; Krzmarzick, M.; Mausbach, W.; Lampert, D. A remote sensing tool for near real-time monitoring of harmful algal blooms and turbidity in reservoirs. JAWRA J. Am. Water Resour. Assoc. 2023, 59, 929–949. [Google Scholar] [CrossRef]
- Cui, M.; Sun, Y.; Huang, C.; Li, M. Water turbidity retrieval based on UAV hyperspectral remote sensing. Water 2022, 14, 128. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cárdenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Ramesh, J.V.N.; Patibandla, P.R.; Shanbhog, M.; Ambala, S.; Ashraf, M.; Kiran, A. Ensemble deep learning approach for turbidity prediction of Dooskal Lake using remote sensing data. Remote Sens. Earth Syst. Sci. 2023, 6, 146–155. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; Song, K.; Wang, X.; Wen, Z.; Kutser, T.; Jacinthe, P.-A.; Shang, Y.; Lyu, L.; Fang, C.; et al. Remote sensing of CDOM and DOC in alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data. J. Environ. Manag. 2021, 286, 112231. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, B.; Wang, S.; Wang, G. Remote sensing estimation of the concentration and sources of coloured dissolved organic matter based on MODIS: A case study of Erhai lake. Ecol. Indic. 2021, 131, 108180. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1304–1315. [Google Scholar] [CrossRef]
- Dyba, K.; Ermida, S.; Ptak, M.; Piekarczyk, J.; Sojka, M. Evaluation of methods for estimating lake surface water temperature using Landsat 8. Remote Sens. 2022, 14, 3839. [Google Scholar] [CrossRef]
- Yuan, K.; Zhuang, X.; Schaefer, G.; Feng, J.; Guan, L.; Fang, H. Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7422–7434. [Google Scholar] [CrossRef]
- Wu, Y.; Han, P.; Zheng, Z. Instant water body variation detection via analysis on remote sensing imagery. J. Real-Time Image Process. 2021, 18, 1577–1590. [Google Scholar] [CrossRef]
- Lin, Y.; Li, X.; Zhang, T.; Chao, N.; Yu, J.; Cai, J.; Sneeuw, N. Water volume variations estimation and analysis using multisource satellite data: A case study of Lake Victoria. Remote Sens. 2020, 12, 3052. [Google Scholar] [CrossRef]
- Bijeesh, T.; Narasimhamurthy, K. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustain. Water Resour. Manag. 2020, 6, 68. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Thé, J.V.G.; Yang, S.X.; Gharabaghi, B. The discharge forecasting of multiple monitoring station for humber river by hybrid LSTM models. Water 2022, 14, 1794. [Google Scholar] [CrossRef]
- Chipman, J.W. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sens. 2019, 11, 158. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, R.; Fu, H.; Zhu, J.; Li, Y. Water Area Extraction and Water Level Prediction of Dongting Lake Based on Sentinel-1 Dual-Polarization Data Decomposition. Remote Sens. 2023, 15, 4655. [Google Scholar] [CrossRef]
- Nan, Y.; Jianhui, L.; Wenbo, M.; Wangjun, L.; Di, W.; Wanchao, G.; Changhao, S. Water depth retrieval models of East Dongting Lake, China, using GF-1 multi-spectral remote sensing images. Glob. Ecol. Conserv. 2020, 22, e01004. [Google Scholar] [CrossRef]
- Naji, T.A.H.; Abdul-Hameed, S.A.Q.; Abdul-Hameed, D.A.Q.; Awad, T.M.; Fakhruldeen, S.S.R. The use of remote sensing technology in defining the water depth in the lakes and water bodies: Western Iraq as a case study. J. Glob. Innov. Agric. Sci. 2023, 11, 191–197. [Google Scholar] [CrossRef]
- Song, W.; Yinglan, A.; Wang, Y.; Fang, Q.; Tang, R. Study on remote sensing inversion and temporal-spatial variation of Hulun lake water quality based on machine learning. J. Contam. Hydrol. 2024, 260, 104282. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; Xia, J.; Zhang, S.; Luo, X.; Hu, S.; Zhan, C. Characterizing water body changes in Poyang lake using multi-source remote sensing data. Environ. Dev. 2023, 48, 100909. [Google Scholar] [CrossRef]
- Yang, H.; Guo, H.; Dai, W.; Nie, B.; Qiao, B.; Zhu, L. Bathymetric mapping and estimation of water storage in a shallow lake using a remote sensing inversion method based on machine learning. Int. J. Digit. Earth 2022, 15, 789–812. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Álvarez-Taboada, F.; Govedarica, M. Long-term monitoring of inland water quality parameters using Landsat time-series and back-propagated ANN: Assessment and usability in a real-case scenario. Remote Sens. 2023, 16, 68. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, B.; Wang, G.; Zhang, X.; Zhang, Q. Deep Learning-Based Water Quality Retrieval in an Impounded Lake Using Landsat 8 Imagery: An Application in Dongping Lake. Remote Sens. 2022, 14, 4505. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Q. An approach for estimating MODIS reflectance at top-of-atmosphere at 667 and 678 nm from reflectance at 645 nm in turbid waters. Environ. Earth Sci. 2014, 71, 1105–1114. [Google Scholar] [CrossRef]
- Yang, W.; Matsushita, B.; Chen, J.; Yoshimura, K.; Fukushima, T. Retrieval of inherent optical properties for turbid inland waters from remote-sensing reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3761–3773. [Google Scholar] [CrossRef]
- Sayers, M.; Bosse, K.; Shuchman, R.; Ruberg, S.; Fahnenstiel, G.; Leshkevich, G.; Stuart, D.; Johengen, T.; Burtner, A.; Palladino, D. Spatial and temporal variability of inherent and apparent optical properties in western Lake Erie: Implications for water quality remote sensing. J. Great Lakes Res. 2019, 45, 490–507. [Google Scholar] [CrossRef]
- Matsui, K.; Shirai, H.; Kageyama, Y.; Yokoyama, H. Improving the resolution of UAV-based remote sensing data of water quality of Lake Hachiroko, Japan by neural networks. Ecol. Inform. 2021, 62, 101276. [Google Scholar] [CrossRef]
- Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and satellite multispectral data approach to monitor water quality in small reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Rahul, T.S.; Brema, J.; Wessley, G.J.J. Evaluation of surface water quality of Ukkadam lake in Coimbatore using UAV and Sentinel-2 multispectral data. Int. J. Environ. Sci. Technol. 2023, 20, 3205–3220. [Google Scholar] [CrossRef]
- Lo, Y.; Fu, L.; Lu, T.; Huang, H.; Kong, L.; Xu, Y.; Zhang, C. Medium-sized lake water quality parameters retrieval using multispectral UAV image and machine learning algorithms: A case study of the Yuandang Lake, China. Drones 2023, 7, 244. [Google Scholar] [CrossRef]
- Guimarães, T.T.; Veronez, M.R.; Koste, E.C.; Souza, E.M.; Brum, D.; Gonzaga, L., Jr.; Mauad, F.F. Evaluation of regression analysis and neural networks to predict total suspended solids in water bodies from unmanned aerial vehicle images. Sustainability 2019, 11, 2580. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Strong, A.E. Remote sensing of algal blooms by aircraft and satellite in Lake Erie and Utah Lake. Remote Sens. Environ. 1974, 3, 99–107. [Google Scholar] [CrossRef]
- Vogt, M.C.; Vogt, M.E. Near-remote sensing of water turbidity using small unmanned aircraft systems. Environ. Pract. 2016, 18, 18–31. [Google Scholar] [CrossRef]
- Guo, H.; Tian, S.; Huang, J.J.; Zhu, X.; Wang, B.; Zhang, Z. Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive. ISPRS J. Photogramm. Remote Sens. 2022, 183, 451–469. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, L.; Sun, N.; Chen, J.; Pang, S. Landsat 8-observed water quality and its coupled environmental factors for urban scenery lakes: A case study of West Lake. Water Environ. Res. 2020, 92, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and comparison of water quality products in Baltic lakes using Sentinel-2 MSI and Sentinel-3 OLCI data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef]
- Ambrose-Igho, G.; Seyoum, W.M.; Perry, W.L.; O’Reilly, C.M. Spatiotemporal analysis of water quality indicators in small lakes using Sentinel-2 satellite data: Lake Bloomington and Evergreen Lake, Central Illinois, USA. Environ. Process. 2021, 8, 637–660. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.; Wu, Y.; Zhu, L.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; Bukata, R.P. An analysis of MODIS-derived algal and mineral turbidity in Lake Erie. J. Great Lakes Res. 2012, 38, 107–116. [Google Scholar] [CrossRef]
- Deutsch, E.; Alameddine, I.; El-Fadel, M. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: How transferable are the water quality algorithms? Environ. Monit. Assess. 2018, 190, 141. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W. Consistency evaluation of Landsat-7 and Landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto Int. 2020, 37, 91–102. [Google Scholar] [CrossRef]
- Masocha, M.; Dube, T.; Nhiwatiwa, T.; Choruma, D. Testing utility of Landsat 8 for remote assessment of water quality in two subtropical African reservoirs with contrasting trophic states. Geocarto Int. 2018, 33, 667–680. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. An appraisal of the potential of Landsat 8 in estimating chlorophyll-a, ammonium concentrations and other water quality indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef]
- Sobrino, J.A.; García-Monteiro, S.; Julien, Y. An analysis of the Lake Surface Water Temperature evolution of the world’s largest lakes during the years 2003–2020 using MODIS data. Recent Adv. Remote Sens. 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, X.; Zhuang, L.; Zhu, R.; Guo, J. Analysis of surface temperature variation of lakes in China using MODIS land surface temperature data. Sci. Rep. 2022, 12, 2415. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Gao, H.; Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sens. Environ. 2020, 251, 112104. [Google Scholar] [CrossRef]
- Tavares, M.H.; Cardoso, M.A.; Motta Marques, D.; Bonnet, M.P.; Fragoso, C.R., Jr. High Spring Warming Rates in an Extensive Subtropical Shallow Lakes System Detected Using MODIS Imagery. ACS EST Water 2024, 4, 1518–1530. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Al-Kharusi, E.S.; Tenenbaum, D.E.; Abdi, A.M.; Kutser, T.; Karlsson, J.; Bergström, A.K.; Berggren, M. Large-scale retrieval of coloured dissolved organic matter in northern lakes using Sentinel-2 data. Remote Sens. 2020, 12, 157. [Google Scholar] [CrossRef]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Bonansea, M.; Ledesma, M.; Bazán, R.; Ferral, A.; German, A.; O’Mill, P.; Rodriguez, C.; Pinotti, L. Evaluating the feasibility of using Sentinel-2 imagery for water clarity assessment in a reservoir. J. S. Am. Earth Sci. 2019, 95, 102265. [Google Scholar] [CrossRef]
- Sent, G.; Biguino, B.; Favareto, L.; Cruz, J.; Sá, C.; Dogliotti, A.I.; Palma, C.; Brotas, V.; Brito, A.C. Deriving water quality parameters using sentinel-2 imagery: A case study in the Sado Estuary, Portugal. Remote Sens. 2021, 13, 1043. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.; Chen, B.; Guo, X.; Singh, V. A machine learning-based strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery. Int. J. Remote Sens. 2020, 42, 1841–1866. [Google Scholar] [CrossRef]
- Giardino, C.; Brando, V.; Dekker, A.; Strömbeck, N.; Candiani, G. Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sens. Environ. 2007, 109, 183–195. [Google Scholar] [CrossRef]
- Wang, S.; Yan, F.; Zhou, Y.; Zhu, L.; Wang, L.; Jiao, Y. Water quality monitoring using hyperspectral remote sensing data in Taihu Lake China. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ′05, Seoul, Republic of Korea, 29 July 2005; Volume 7, pp. 4553–4556. [Google Scholar]
- Brando, V.; Dekker, A. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, Z.Y.; Goncu, S.; Avdan, U. Evaluation of RapidEye-3 Satellite Data for Assessing Water Turbidity of Lake Borabey. Proceedings 2019, 48, 14. [Google Scholar] [CrossRef]
- Mishra, S.; Stumpf, R.; Meredith, A. Evaluation of RapidEye data for mapping algal blooms in inland waters. Int. J. Remote Sens. 2018, 40, 2811–2829. [Google Scholar] [CrossRef]
- Su, P.W.; Lo, S.L. Using Landsat 8 imagery for remote monitoring of total phosphorus as a water quality parameter of irrigation ponds in Taiwan. Environ. Sci. Pollut. Res. 2021, 28, 66687–66694. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China. Environ. Monit. Assess. 2009, 148, 255–264. [Google Scholar] [CrossRef]
- Lv, H.; Huang, J.Z.; Jiang, N. Quantitative retrieval of water quality by remote sensing in Taihu Lake based on MODIS data. J. Geo-Inf. Sci. 2009, 11, 104–110. [Google Scholar]
- Xiaoyu, Z.; Dingtian, Y.; Xiaofeng, Z.; Difeng, W.; Shujing, L.; Delu, P. Pre-Operational Monitoring of Large Inland Lake Water Quality by MODIS Imagery. In Proceedings of the SPIE Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, Bruges, Belgium, 19–22 September 2005; Volume 5977, pp. 148–157. [Google Scholar]
- Duan, H.; Tao, M.; Loiselle, S.; Zhao, W.; Cao, Z.; Ma, R.; Tang, X. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Water Res. 2017, 122, 455–470. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Jiang, T.; Li, X.; Li, Y. Evaluation of the Effectiveness of Multiple Machine Learning Methods in Remote Sensing Quantitative Retrieval of Suspended Matter Concentrations: A Case Study of Nansi Lake in North China. J. Spectrosc. 2021, 2021, 5957376. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, H.; Tao, Z.; Ge, L.; Song, K.; Xu, S.; Li, Y.; Zhang, L.; Zhang, X.; Li, S. Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region. Opt. Express 2024, 32, 16371–16397. [Google Scholar] [CrossRef]
- Kontopoulou, E.; Kolokoussis, P.; Karantzalos, K. Water quality estimation in Greek lakes from Landsat 8 multispectral satellite data. Eur. Water 2017, 58, 191–196. [Google Scholar]
- Al-Shaibah, B.; Liu, X.; Zhang, J.; Tong, Z.; Zhang, M.; El-Zeiny, A.; Faichia, C.; Hussain, M.; Tayyab, M. Modeling water quality parameters using landsat multispectral images: A case study of Erlong lake, northeast China. Remote Sens. 2021, 13, 1603. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, C.; Ji, T.; Hu, Y.; Li, L. Water Quality Retrieval from ZY1-02D Hyperspectral Imagery in Urban Water Bodies and Comparison with Sentinel-2. Remote Sens. 2022, 14, 5029. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water quality retrieval from PRISMA hyperspectral images: First experience in a turbid lake and comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Sun, X.; Gao, Y.; Lan, Z.; Wang, Y.; Zhai, H.; Li, J.; Wang, W.; Chen, M.; et al. A new method for calculating water quality parameters by integrating space–ground hyperspectral data and spectral-in situ assay data. Remote Sens. 2022, 14, 3652. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, A.; Han, L.; Li, Y.; Xie, Y. Monitoring urban black-odorous water by using hyperspectral data and machine learning. Environ. Pollut. 2021, 269, 116166. [Google Scholar]
- Singh, A.; Jakubowski, A.; Chidister, I.; Townsend, P. A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens. Environ. 2013, 128, 74–86. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Río, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Govil, H.; Guha, S.; Diwan, P.; Gill, N.; Dey, A. Analyzing Linear Relationships of LST with NDVI and MNDISI Using Various Resolution Levels of Landsat 8 OLI and TIRS Data. In Data Management, Analytics and Innovation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wang, X.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Fang, C.; Lyu, L.; Wang, Q. Quantifying Turbidity Variation for Lakes in Daqing of Northeast China Using Landsat Images From 1984 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8884–8897. [Google Scholar] [CrossRef]
- McFeeters, S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Helali, J.; Asaadi, S.; Jafarie, T.; Habibi, M.; Salimi, S.; Momenpour, S.; Shahmoradi, S.; Hosseini, S.; Hessari, B.; Saeidi, V. Drought monitoring and its effects on vegetation and water extent changes using remote sensing data in Urmia Lake watershed, Iran. J. Water Clim. Change 2022, 13, 2107–2128. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef]
- Özelkan, E. Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Pol. J. Environ. Stud. 2020, 29, 1759–1769. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, B.; Li, J.; Shen, Q.; Wu, Y.; Wang, G.; Zou, L.; Wang, S. Validation of a synthetic chlorophyll index for remote estimates of chlorophyll-a in a turbid hypereutrophic lake. Int. J. Remote Sens. 2014, 35, 289–305. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcantara, E.; Rodrigues, T.; Rotta, L.; Bernardo, N.; Imai, N. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). An. Acad. Bras. Ciências 2017, 90 (Suppl. S1), 1987–2000. [Google Scholar] [CrossRef]
- Malahlela, O.E. Spatio-temporal assessment of inland surface water quality using remote sensing data in the wake of changing climate. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 062012. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4, p. 738. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hajigholizadeh, M.; Moncada, A.; Kent, S.; Melesse, A.M. Land–lake linkage and remote sensing application in water quality monitoring in Lake Okeechobee, Florida, USA. Land 2021, 10, 147. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Z.; Huang, P.; Zhai, Y.; Yang, X.; Su, J. Inversion Method for Chlorophyll-a Concentration in High-Salinity Water Based on Hyperspectral Remote Sensing Data. Sensors 2024, 24, 4181. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Hu, B.; Zhang, Z.; Liu, Y.; Liu, X.; Liu, H.; Liu, J.; Wang, X.; Song, S. Retrieval of water quality parameters based on near-surface remote sensing and machine learning algorithm. Remote Sens. 2022, 14, 5305. [Google Scholar] [CrossRef]
- Qiao, Z.; Sun, S.; Jiang, Q.O.; Xiao, L.; Wang, Y.; Yan, H. Retrieval of total phosphorus concentration in the surface water of Miyun reservoir based on remote sensing data and machine learning algorithms. Remote Sens. 2021, 13, 4662. [Google Scholar] [CrossRef]
- Qun’ou, J.; Lidan, X.; Siyang, S.; Meilin, W.; Huijie, X. Retrieval model for total nitrogen concentration based on UAV hyperspectral remote sensing data and machine learning algorithms—A case study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar] [CrossRef]
- Mu, M.; Li, Y.; Bi, S.; Lyu, H.; Xu, J.; Lei, S.; Miao, S.; Zeng, S.; Zheng, Z.; Du, C. Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences. Ecol. Indic. 2021, 124, 107416. [Google Scholar] [CrossRef]
- Peng, C.; Xie, Z.; Jin, X. Using Ensemble Learning for Remote Sensing Inversion of Water Quality Parameters in Poyang Lake. Sustainability 2024, 16, 3355. [Google Scholar] [CrossRef]
- Leggesse, E.S.; Zimale, F.A.; Sultan, D.; Enku, T.; Srinivasan, R.; Tilahun, S.A. Predicting optical water quality indicators from remote sensing using machine learning algorithms in tropical highlands of Ethiopia. Hydrology 2023, 10, 110. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Ren, H.; Deng, L.; Zhang, P. Retrieval of water quality parameters from hyperspectral images using hybrid Bayesian probabilistic neural network. Remote Sens. 2020, 12, 1567. [Google Scholar] [CrossRef]
- Arias-Rodriguez, L.F.; Duan, Z.; de Jesús Díaz-Torres, J.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Tuo, Y.; Disse, M. Integration of remote sensing and Mexican water quality monitoring system using an extreme learning machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, J.; Zheng, Z.; Song, Y.; Lai, Y. Classification of inland lake water quality levels based on Sentinel-2 images using convolutional neural networks and spatiotemporal variation and driving factors of algal bloom. Ecol. Inform. 2024, 80, 102549. [Google Scholar] [CrossRef]
- Giménez, J.G.; González, M.; Martínez-España, R.; Cecilia, J.M.; López-Espín, J.J. Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor. J. Ambient. Intell. Smart Environ. 2024. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Hu, H. A Novel Deep Learning Network Model for Extracting Lake Water Bodies from Remote Sensing Images. Appl. Sci. 2024, 14, 1344. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Bustos Usta, D.; Duran-Llacer, I.; Bravo Alvarez, L.; Yépez, S.; Bourrel, L.; Frappart, F.; Urrutia, R. Estimation of Water Quality Parameters through a Combination of Deep Learning and Remote Sensing Techniques in a Lake in Southern Chile. Remote Sens. 2023, 15, 4157. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Flood Forecasting Using Hybrid LSTM and GRU Models with Lag Time Preprocessing. Water 2023, 15, 3982. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, Y.; Fung, S.; Xomchuk, V.R.; Jiang, M.; Moore, T.; Beckler, J. Spatiotemporal deep-learning-based algal bloom prediction for Lake Okeechobee using multisource data fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8318–8331. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, Y.; Deng, Y.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks. Water 2024, 16, 707. [Google Scholar] [CrossRef]
- Pan, B.; Yu, H.; Cheng, H.; Du, S.; Cai, S.; Zhao, M.; Du, J.; Xie, F. A CNN–LSTM Machine-Learning Method for Estimating Particulate Organic Carbon from Remote Sensing in Lakes. Sustainability 2023, 15, 13043. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Deng, Y.; Pan, D.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Daily Streamflow Forecasting Using Networks of Real-Time Monitoring Stations and Hybrid Machine Learning Methods. Water 2024, 16, 1284. [Google Scholar] [CrossRef]
- Ramaraj, M.; Sivakumar, R. Integration of band regression empirical water quality (BREWQ) model with deep learning algorithm in spatiotemporal modeling and prediction of surface water quality parameters. Model. Earth Syst. Environ. 2023, 9, 3279–3304. [Google Scholar] [CrossRef]
- Hao, Z.; Li, W.; Wu, J.; Zhang, S.; Hu, S. A novel deep learning model for mining nonlinear dynamics in lake surface water temperature prediction. Remote Sens. 2023, 15, 900. [Google Scholar] [CrossRef]
- Huynh, N.H.; Böer, G.; Schramm, H. Self-attention and generative adversarial networks for algae monitoring. Eur. J. Remote Sens. 2022, 55, 10–22. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Wang, X.; Xu, J. Remote sensing image analysis and prediction based on improved Pix2Pix model for water environment protection of smart cities. PeerJ Comput. Sci. 2023, 9, e1292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pan, D.; Van Griensven, J.; Yang, S.X.; Gharabaghi, B. Intelligent flood forecasting and warning: A survey. Intell. Robot. 2023, 3, 190–212. [Google Scholar] [CrossRef]
- Maxwell, A.; Sharma, M.; Donaldson, K. Explainable Boosting Machines for Slope Failure Spatial Predictive Modeling. Remote Sens. 2021, 13, 4991. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar] [CrossRef]
- Alqahtani, A.; Shah, M.; Aldrees, A.; Javed, M. Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality. Sustainability 2022, 14, 1183. [Google Scholar] [CrossRef]
- Devi, P.D.; Mamatha, G. Machine learning approach to predict the turbidity of Saki Lake, Telangana, India, using remote sensing data. Meas. Sens. 2024, 33, 101139. [Google Scholar] [CrossRef]
- Xu, M. Assessment Method of Lake’s Water Quality Based on Remote-Sensed Image and Support Vector Machine. In Proceedings of the IEEE Conference on Industrial Electronics and Applications, Harbin, China, 15–17 May 2007; pp. 2565–2570. [Google Scholar]
- Hill, P.; Kumar, A.; Temimi, M.; Bull, D. HABNet: Machine learning, remote sensing-based detection of harmful algal blooms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3229–3239. [Google Scholar] [CrossRef]
- Chang, N.B.; Bai, K.; Chen, C.F. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management. J. Environ. Manag. 2017, 201, 227–240. [Google Scholar] [CrossRef]
- Sedighkia, M.; Datta, B.; Saeedipour, P.; Abdoli, A. Predicting water quality distribution of lakes through linking remote sensing-based monitoring and machine learning simulation. Remote Sens. 2023, 15, 3302. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.C.; Huang, J.; McBean, E. Retrieval of water quality parameters in Lake Ontario based on hyperspectral remote sensing data and intelligent algorithms. Remote Sens. 2020, 14, 1869. [Google Scholar] [CrossRef]
- Lakshmi, G.; Bodapati, V.; Baji, S.; Panuganti, T. Water Quality Monitoring Using Remote-Sensing. In Proceedings of the 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 28–30 April 2023; pp. 624–628. [Google Scholar]
- Siddiqi, A.; Baber, S.; Weck, O. Valuing Radiometric Quality of Remote Sensing Data for Decisions. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Sympsosium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5724–5727. [Google Scholar]
- Arias-Rodriguez, L.; Tüzün, U.; Duan, Z.; Huang, J.; Tuo, Y.; Disse, M. Global Water Quality of Inland Waters with Harmonized Landsat-8 and Sentinel-2 Using Cloud-Computed Machine Learning. Remote Sens. 2023, 15, 1390. [Google Scholar] [CrossRef]
- Chen, J.; Fu, R.; Chen, S.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K. Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects. Earth’s Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
Satellite | A | B | C | D | E | F | G | H | I | J | K | L | Parameters | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landsat 5 | √ | √ | √ | √ | √ | √ | √ | Chl-a, Turbidity | [71,92,93] | |||||
Landsat 7 | √ | √ | √ | √ | √ | √ | √ | CDOM, Chl-a | [129,130] | |||||
Landsat 8 | √ | √ | √ | √ | √ | √ | √ | √ | CDOM, Chl-a, Turbidity | [131,132] | ||||
MODIS | √ | √ | √ | √ | √ | √ | √ | √ | √ | Chl-a | [133,134,135,136] | |||
Sentinel-2 | √ | √ | √ | √ | √ | √ | √ | √ | √ | CDOM, Chl-a, Turbidity | [126,137,138,139,140,141,142,143,144] | |||
RapidEye | √ | √ | √ | √ | √ | CDOM, Chl-a, Turbidity | [145,146,147] | |||||||
Hyperion | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | Chl-a | [143,144] |
Index | General Formula | Dataset | Parameters | Ref. |
---|---|---|---|---|
NDVI | Landsat TM | Chl-a | [163] | |
Landsat 8 | Temperature | [164] | ||
Sentinel-2 | Turbidity | [165] | ||
NDTI | Sentinel-2 | Turbidity | [166] | |
EVI | MODIS | Chl-a | [167] | |
Landsat 8 | Water Level | [167] | ||
NDWI | Sentinel-2 | Turbidity | [168] | |
Chl-a | [167] | |||
Water body | [169] | |||
NDCI | Sentinel-2 | Chl-a | [170] | |
MCI | Sentinel-2 | Chl-a | [167] | |
SCI | Landsat TM | Chl-a | [171] |
Model | Train: Test | Number of Data | Ref. |
---|---|---|---|
LR | 3:1 | 156 | [176] |
RR | 4:1 | 30 | [177] |
LassoR | 8:3 | 112 | [179] |
RFs | 4:1 | 30 | [177] |
GBTs | 2:1 | 329 | [155] |
SVM | 8:3 | 112 | [179] |
SVR | 4:1 | 382 | [89] |
GPR | 2:1 | 374 | [52] |
DNNs | 4:1 | 382 | [89] |
CNN | 4:1 | 465 | [186] |
ConvLSTM | 4:1 | 8744 | [191] |
CNN-LSTM | 2:1 | 76 | [193] |
GANs | 4:1 | 898 | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhang, Y.; Pan, D.; Yang, S.X.; Gharabaghi, B. Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management. Remote Sens. 2024, 16, 4196. https://doi.org/10.3390/rs16224196
Deng Y, Zhang Y, Pan D, Yang SX, Gharabaghi B. Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management. Remote Sensing. 2024; 16(22):4196. https://doi.org/10.3390/rs16224196
Chicago/Turabian StyleDeng, Ying, Yue Zhang, Daiwei Pan, Simon X. Yang, and Bahram Gharabaghi. 2024. "Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management" Remote Sensing 16, no. 22: 4196. https://doi.org/10.3390/rs16224196
APA StyleDeng, Y., Zhang, Y., Pan, D., Yang, S. X., & Gharabaghi, B. (2024). Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management. Remote Sensing, 16(22), 4196. https://doi.org/10.3390/rs16224196