Improvement of Coal Mining-Induced Subsidence-Affected (MISA) Zone Irregular Boundary Delineation by MT-InSAR Techniques, UAV Photogrammetry, and Field Investigation
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Field Investigation
3.2. UAV Photogrammetry
3.3. InSAR Processing
3.3.1. Dataset Collection
3.3.2. DInSAR
3.3.3. InSAR Stacking
3.3.4. IPTA Time-Series Analysis
3.3.5. SAR Dataset Processing
4. Results
4.1. Mining History Reconstruction
4.2. Mean LOS Velocity of Mining-Induced Ground Subsidence/Surface Mean Velocity Fields
4.3. Ground Fissures Derived from Field Investigation and UAV Measurements
4.4. Angles of Draw of Unevenly Distributed Ground Movements
4.5. Time-Series Measurements Around Tunnel Alignments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, M. Mine Subsidence, Society of Mining Engineers; AIME: Littleton, CO, USA, 1986; p. 73-1. [Google Scholar]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B.; Al Heib, M.; de Michele, M.; Raucoules, D.; Guise, Y.; Planchenault, J. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Kratzsch, H. Mining Subsidence Engineering; Fleming, R.F.S., Translator; Springer: New York, NY, USA, 1983. [Google Scholar]
- Whittaker, B.N.; Reddish, D.J. Subsidence-Occurrence, Prediction and Control; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Diao, X.; Wu, K.; Chen, R.; Yang, J. Identifying the cause of abnormal building damage in mining subsidence areas using InSAR technology. IEEE Access 2019, 7, 172296–172304. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- National Coal Board (NCB). Subsidence Engineer’s Handbook; NCB Mining Department: London, UK, 1975. [Google Scholar]
- Holla, L.; Barclay, E. Mine Subsidence on the Southern Coalfield New South Wales; New South Wales Department of Mineral Resources: Sydney, NSW, Australia, 2000; Volume 118. [Google Scholar]
- Ren, G.; Li, J. A study of angle of draw in mining subsidence using numerical modeling techniques. Electron. J. Geotech. Eng. 2008, 13, 1–14. [Google Scholar]
- Xu, X.; Zhao, Y.; Hu, Z.; Yu, Y.; Shao, F. Boundary demarcation of the damaged cultivated land caused by coal mining subsidence. Bull. Eng. Geol. Environ. 2014, 73, 621–633. [Google Scholar] [CrossRef]
- Yao, X.L.; Whittaker, B.N.; Reddish, D.J. Influence of overburden mass behavioural properties on subsidence limit characteristics. Min. Sci. Technol. 1991, 13, 167–173. [Google Scholar] [CrossRef]
- Singh, K.B.; Singh, T.N. Ground movements over longwall workings in the Kamptee coalfield, India. Eng. Geol. 1998, 50, 125–139. [Google Scholar] [CrossRef]
- Yan, W.; Chen, J.; Tan, Y.; Zhang, W.; Cai, L. Theoretical analysis of mining induced overburden subsidence boundary with the horizontal coal seam mining. Adv. Civ. Eng. 2021, 2021, 6657738. [Google Scholar] [CrossRef]
- Wnuk, K.; Zhou, W.; Gutierrez, M. Mapping Urban Excavation Induced Deformation in 3D via Multiplatform InSAR Time-Series. Remote Sens. 2021, 13, 4748. [Google Scholar] [CrossRef]
- Przyłucka, M.; Kowalski, Z.; Perski, Z. Twenty years of coal mining-induced subsidence in the Upper Silesia in Poland identified using InSAR. Int. J. Coal Sci. Technol. 2022, 9, 86. [Google Scholar] [CrossRef]
- Wnuk, K.; Zhou, W.; Gutierrez, M. Tunneling- and dewatering-induced rapid differential ground rebound and delayed subsidence measured by InSAR in an urban environment. J. Appl. Remote Sens. 2024, 18, 024512. [Google Scholar] [CrossRef]
- Blachowski, J.; Jirankova, E.; Lazecký, M.; Kadlečík, P.; Milczarek, W. Application of satellite radar interferometry (PSInSAR) in analysis of secondary surface deformations in mining areas. Case studies from Czech Republic and Poland. Acta Geodyn. Geomater. 2018, 15, 173–185. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, W.; Gutierrez, M. Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA. Remote Sens. 2022, 15, 202. [Google Scholar] [CrossRef]
- Massonnet, D.; Holzer, T.; Vadon, H. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry. Geophys. Res. Lett. 1997, 24, 901–904. [Google Scholar] [CrossRef]
- Stow, R.J.; Wright, P. Mining subsidence land survey by SAR interferometry. In ESA SP (Print); ESA Publications Division: Noordwijk, The Netherlands, 1997; pp. 525–530. [Google Scholar]
- Perski, Z. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland. Int. Arch. Photogramm. Remote Sens. 1998, 32, 555–558. [Google Scholar]
- Wempen, J.M. Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. Int. J. Min. Sci. Technol. 2020, 30, 33–37. [Google Scholar] [CrossRef]
- Zhou, W.; Lowry, B.; Wnuk, K.; Liu, L.; Gutierrez, M. InSAR and Its Applications in Geo-engineering: Case Studies with Different Platforms and Sensors. In Information Technology in Geo-Engineering, Proceedings of 5th International Conference on Information Technology in Geo-Engineering, Golden, CO, USA, 5–8 August 2024; Gutierrez, M., Ed.; Springer: Cham, Switzerland, 2024; pp. 179–190. [Google Scholar]
- Graham, L.C. Synthetic interferometer radar for topographic mapping. Proc. IEEE 1974, 62, 763–768. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Integration of DInSAR and SBAS Techniques to determine mining-related deformations using sentinel-1 data: The case study of Rydułtowy mine in Poland. Remote Sens. 2020, 12, 242. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the Permanent Scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1700. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Piter, A.; Haghighi, M.H.; Motagh, M. Evaluation of pixel selection methods for traffic infrastructure monitoring using Sentinel-1 InSAR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 333–340. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS’03, Toulouse, France, 21–25 July 2003; Volume 1, pp. 221–223. [Google Scholar]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Teatini, P.; Strozzi, T.; Tosi, L.; Wegmüller, U.; Werner, C.; Carbognin, L. Assessing short-and long-time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy verification and correction of D-InSAR and SBAS-InSAR in monitoring mining surface subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Parwata, I.N.S.; Shimizu, N.; Zeka, S.; Gruji, B.; Vrkljan, I. Application of DInSAR for monitoring the subsidence induced by salt mining in Tuzla, Bosnia and Herzegovina. In Proceedings of the ISRM International Symposium-Asian Rock Mechanics Symposium (ISRM-ARMS10), Singapore, 29 October–3 November 2018. [Google Scholar]
- Simmons, B.S.; Wempen, J.M. Quantifying relationships between subsidence and longwall face advance using DInSAR. Int. J. Min. Sci. Technol. 2021, 31, 91–94. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Werner, C.; Wiesmann, A. Measurement of slow uniform surface displacement with mm/year accuracy. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 5, pp. 2239–2241. [Google Scholar]
- Xu, Y.; Li, T.; Tang, X.; Zhang, X.; Fan, H.; Wang, Y. Research on the applicability of DInSAR, stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the datong coalfield. Remote Sens. 2022, 14, 3314. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, C.; Li, Z.; Jiang, M.; He, X. InSAR stacking with atmospheric correction for rapid geohazard detection: Applications to ground subsidence and landslides in China. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103082. [Google Scholar] [CrossRef]
- Doe, J.; Smith, A. UAV & satellite synergies for optical remote sensing applications: A literature review. J. Remote Sens. Technol. 2023, 12, 45–60. [Google Scholar]
- Doe, J.; Lee, B. Identification of mining induced ground fissures using UAV and infrared thermal imager: Temperature variation and fissure evolution. J. Geospat. Technol. 2023, 15, 101–115. [Google Scholar]
- Trippi, M.H.; Belkin, H.E.; Dai, S.; Tewalt, S.J.; Chou, C.J. USGS Compilation of Geographic Information System (GIS) Data Representing Coal Mines and Coal-Bearing Areas in China (No. 2014-1219); US Geological Survey: Reston, VI, USA, 2015. [Google Scholar]
- ESA (European Space Agency). SENTINEL-1, ESA’s Radar Observatory Mission for GMES Operational Services; ESA SP-1322/1; ESA: Noordwijk, The Netherlands, 2012. [Google Scholar]
- NASA JPL. NASADEM Merged DEM Global 1 Arc Second V001. Distributed by OpenTopography. 2021. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.032021.4326.2 (accessed on 16 July 2024).
- Ge, L.; Cheng, E.; Li, X.; Rizos, C. Quantitative subsidence monitoring: The integrated InSAR, GPS and GIS approach. In Proceedings of the 6th International Symposium on Satellite Navigation Technology Including Mobil Positioning & Location Services, Melbourne, VIC, Australia, 22–25 July 2003; Volume 87. [Google Scholar]
- Raucoules, D.; Parcharidis, I.; Feurer, D.; Novalli, F.; Ferretti, A.; Carnec, C. Ground deformation detection of the greater area of Thessaloniki (Northern Greece) using radar interferometry techniques. Nat. Hazards Earth Syst. Sci. 2008, 8, 779–788. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, H.; Ma, J.; Kong, B.; Wang, Y. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens. Environ. 2011, 115, 257–268. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Y.; Tan, K. Coal mining deformation monitoring using SBAS-InSAR and offset tracking: A case study of Yu County, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6077–6087. [Google Scholar] [CrossRef]
- Donnelly, L.J.; Culshaw, M.G.; Bell, F.G. Longwall mining-induced fault reactivation and delayed subsidence ground movement in British coalfields. Q. J. Eng. Geol. Hydrogeol. 2008, 41, 301–314. [Google Scholar] [CrossRef]
Profile A–A’ ) | Profile B–B’ ) | Profile C–C’ ) | Profile A–A’ ) | Profile B–B’ ) | Profile C–C’ ) | |
Values in degrees | 61 | 64 | 77 | 41 | 29 | 26 |
Methodology | Objectives | Measurement Accuracy | Interferograms |
---|---|---|---|
DInSAR | Mining history reconstruction | Centimeter | 9 |
InSAR stacking | Surface mean velocity fields; | Centimeter | 146 |
Time-series analysis | High-resolution time-series analysis of ground movement above the existing tunnel and around the boundary of the mining-impacted area | Millimeter | 24 single reference 68 multireference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xu, N.; Zhou, W.; Qin, Y.; Luan, S. Improvement of Coal Mining-Induced Subsidence-Affected (MISA) Zone Irregular Boundary Delineation by MT-InSAR Techniques, UAV Photogrammetry, and Field Investigation. Remote Sens. 2024, 16, 4221. https://doi.org/10.3390/rs16224221
Liu L, Xu N, Zhou W, Qin Y, Luan S. Improvement of Coal Mining-Induced Subsidence-Affected (MISA) Zone Irregular Boundary Delineation by MT-InSAR Techniques, UAV Photogrammetry, and Field Investigation. Remote Sensing. 2024; 16(22):4221. https://doi.org/10.3390/rs16224221
Chicago/Turabian StyleLiu, Linan, Nengxiong Xu, Wendy Zhou, Yan Qin, and Shilong Luan. 2024. "Improvement of Coal Mining-Induced Subsidence-Affected (MISA) Zone Irregular Boundary Delineation by MT-InSAR Techniques, UAV Photogrammetry, and Field Investigation" Remote Sensing 16, no. 22: 4221. https://doi.org/10.3390/rs16224221
APA StyleLiu, L., Xu, N., Zhou, W., Qin, Y., & Luan, S. (2024). Improvement of Coal Mining-Induced Subsidence-Affected (MISA) Zone Irregular Boundary Delineation by MT-InSAR Techniques, UAV Photogrammetry, and Field Investigation. Remote Sensing, 16(22), 4221. https://doi.org/10.3390/rs16224221