Precision Detection of Infrared Small Target in Ground-to-Air Scene
Abstract
:1. Introduction
- (1)
- Based on the local features of the small target, a non-window, structured LGDI-LGW filter is designed to detect a 1 × 1 pixel infrared small target.
- (2)
- An LGDI algorithm is proposed for distinguishing the grayscale features between true targets, interfering targets, and background edges. It can effectively detect targets with a Gaussian distribution of grayscale values and targets with grayscale values approximating a tree stump structure, and effectively suppress interfering targets and background edges.
- (3)
- An LGW algorithm is proposed to effectively enhance the target through the gradient features of the target and further suppress the interfering targets and background edges.
- (4)
- The target position is obtained using the area adaptive threshold and centroid algorithm, and the position accuracy reaches sub-pixel accuracy.
2. The Proposed Method
2.1. Image Preprocessing
2.2. Calculation of the LGDI-LGW Properties
2.2.1. Calculation of the LGDI Properties
- Calculating the center position of the CT
- 2.
- Calculating the start position of the grayscale descent for eight paths
- 3.
- Calculating the end position of grayscale descent of 8 paths
- 4.
- Calculating LGDI
2.2.2. Calculation of the LGW Properties
Algorithm 1: LGDI-LGW filter. |
Input: . |
Output: . |
1: for i=0:7 do |
calculate the path length in 8 directions through Equation (7). |
end for |
2: Obtain the optimal path direction imax by comparing the Length and the average grayscale value of 8 paths. |
3: for i=0:7 do |
calculate the center coordinates of CTs through Equations (8) and (9). |
end for |
4: for i=0:7 do |
calculate the start position of grayscale descent for 8 paths through Equations (10) and (11). |
end for |
5: for i=0:7 do |
calculate the end position of grayscale descent for 8 paths through Equations (12) and (13). |
end for |
6: for i=0:3 do |
get di through Equation (14). |
end for |
7: Calculate through Equation (15). |
8: for i=0:7 do |
calculate Ti through Equation (16). |
get through Equation (17). |
end for |
9: Calculate through Equation (18). |
10: Calculate the result through Equation (19). |
2.3. Precise Calculation of the Target Position
3. Experiments and Analysis
3.1. Results and Analysis of Simulation Experiments
3.1.1. Quantitative Analysis of Simulation Experiments
3.1.2. Qualitative Analysis of Simulation Experiments
3.2. Analysis of Engineering Experiment Results
- The circular target occupies 68 pixels and has approximate grayscale values.
- The target is precisely detected under the simulated near-sun condition.
- The UAV is a point target occupying four pixels in the infrared image.
- UAV is precisely detected against a complex background such as buildings, trees, and sky.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Qu, H.M.; Cao, D.; Zheng, Q.; Li, Y.-Y.; Chen, Q. Accuracy test and analysis for infrared search and track system. Optik 2013, 124, 2313–2317. [Google Scholar] [CrossRef]
- Zhao, M.J.; Li, W.; Li, L.; Hu, J.; Ma, P.; Tao, R. Single-frame IR small-target detection: A survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 87–119. [Google Scholar] [CrossRef]
- Malanowski, M.; Kulpa, K. Detection of moving targets with continuous-wave noise radar: Theory and measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3502–3509. [Google Scholar] [CrossRef]
- Philip Chen, C.L.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Bai, X.Z.; Bi, Y.G. Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2452–2466. [Google Scholar] [CrossRef]
- Ma, J.Y.; Yu, W.; Liang, P.W.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Ma, J.Y.; Ma, Y.; Li, C. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019, 45, 153–178. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.P.; Liu, M.L.; Ye, C.; Zhou, X. Small Infrared Target Detection Based on Weighted Local Difference Measure. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4204–4214. [Google Scholar] [CrossRef]
- Nie, J.Y.; Qu, S.C.; Wei, Y.T.; Zhang, L.; Deng, L. An Infrared Small Target Detection Method Based on Multiscale Local Homogeneity Measure. Infrared Phys. Technol. 2018, 90, 186–194. [Google Scholar] [CrossRef]
- Gao, C.Q.; Meng, D.Y.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Qin, Y.; Li, B. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1890–1894. [Google Scholar] [CrossRef]
- Shao, X.P.; Fan, H.; Lu, G.X.; Xu, J. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 2012, 55, 403–408. [Google Scholar] [CrossRef]
- Chen, F.J.; Bian, C.J.; Meng, X. Infrared small target detection using Homogeneity-weighted local patch saliency. Infrared Phys. Technol. 2023, 133, 104811. [Google Scholar] [CrossRef]
- Liang, X.J.; Liu, L.L.; Luo, M.; Yan, Z.; Xin, Y. Robust infrared small target detection using Hough line suppression and rank-hierarchy in complex backgrounds. Infrared Phys. Technol. 2022, 120, 103893. [Google Scholar] [CrossRef]
- Zhou, F.; Wu, Y.Q.; Dai, Y.M.; Ni, K. Robust infrared small target detection via jointly sparse constraint of l1/2-metric and dual-graph regularization. Remote Sens. 2020, 12, 1963. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Yang, K. Adaptive Detection for Infrared Small Target Under Sea-Sky Complex Background. Electron. Lett. 2004, 40, 1083–1085. [Google Scholar] [CrossRef]
- Deshpande, S.Y.; Er, H.M.; Ronda, V.; Chan, P. Max-Mean and Max-Median Filters for Detection of Small Targets. Signal Data Process. Small Targets 1999, 3809, 74–83. [Google Scholar]
- Bae, T.W. Small Target Detection Using Bilateral Filter and Temporal Cross Product in Infrared Images. Infrared Phys. Technol. 2011, 54, 403–411. [Google Scholar] [CrossRef]
- Zhao, J.F.; Feng, H.J.; Xu, Z.H.; Li, Q.; Peng, H. Real-time automatic small target detection using saliency extraction and morphological theory. Opt. Laser Technol. 2013, 47, 268–277. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, R.M.; Yang, J. Small Target Detection Using Two-Dimensional Least Mean Square (TDLMS) Filter Based on Neighborhood Analysis. Int. J. Infrared Millim. Waves 2008, 29, 188–200. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, L.; Xin, Y.H. Infrared Small Target Detection Based on Adaptive Double-Layer TDLMS Filter. Acta Photonica Sin. 2019, 48, 0910001. [Google Scholar] [CrossRef]
- Zhang, T.F.; Wu, H.; Liu, Y.H.; Peng, L.; Yang, C.; Peng, Z. Infrared small target detection based on non-convex optimization with lp-norm constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef]
- Zhou, F.; Wu, Y.Q.; Dai, Y.M.; Wang, P. Detection of small target using schatten 1/2 quasinorm regularization with reweighted sparse enhancement in complex infrared scenes. Remote Sens. 2019, 11, 2058. [Google Scholar] [CrossRef]
- Zhang, L.D.; Peng, Z.M. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Liu, D.P.; Cao, L.; Li, Z.Z.; Liu, T.; Che, P. Infrared small target detection based on flux density and direction diversity in gradient vector field. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2528–2554. [Google Scholar] [CrossRef]
- Wei, Y.T.; You, X.G.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Han, J.H.; Liang, K.; Zhou, B.; Zhu, X.; Zhao, J.; Zhao, L. Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [Google Scholar] [CrossRef]
- Han, J.H.; Yu, Y.; Liang, K.; Zhang, H. Infrared small-target detection under complex background based on subblock-level ratio-difference joint local contrast measure. Opt. Eng. 2018, 57, 103105. [Google Scholar] [CrossRef]
- Han, J.H.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhang, H.; Zhao, Q. A Local Contrast Method for Infrared Small-Target Detection Utilizing a Tri-Layer Window. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1822–1826. [Google Scholar] [CrossRef]
- Moradi, S.; Moallem, P.; Sabahi, M.F. Fast and robust small infrared target detection using absolute directional mean difference algorithm. Signal Process. 2020, 117, 107727. [Google Scholar] [CrossRef]
- Han, J.H.; Moradi, S.; Faramarzi, I.; Zhang, H.; Zhao, Q.; Zhang, X.; Li, N. Infrared small target detection based on the weighted strengthened local contrast measure. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1670–1674. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zheng, Y.; Li, X.H. Multi-Scale Strengthened Directional Difference Algorithm Based on the Human Vision System. Sensors 2022, 22, 10009. [Google Scholar] [CrossRef]
- Huang, S.Q.; Liu, Y.H.; He, Y.M.; Zhang, T.; Peng, Z. Structure-adaptive clutter suppression for infrared small target detection: Chain-growth filtering. Remote Sens. 2020, 12, 47. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Pan, N.H.; Zhao, T.Y. Calculation method of expected sharpness value for region of interest in ventral subregion image based on standard deviation-weighted gaussian filter function and multidirectional sobel operator. Laser Optoelectron. Prog. 2024, 61, 385–393. [Google Scholar]
- Xia, G.S.; He, Q.; Wei, Y.C.; Mo, D.H. Edge detection system based on ethernet and FPGA image processing. Instrum. Tech. Sens. 2023, 10, 56–59. [Google Scholar]
- Gauch, J.M. Image segmentation and analysis via multiscale gradient watershed hierarchies. IEEE Trans. Image Process. 1999, 8, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.M.; Wu, Y.Q.; Zhou, F.; Barnard, K. Asymmetric Contextual Modulation for Infrared Small Target Detection. IEEE Winter Conf. Appl. Comput. Vis. WACV 2021, 7, 949–958. [Google Scholar]
- Hui, B.W.; Song, Z.Y.; Fan, H.Q.; Zhong, P.; Hu, W.D.; Zhang, X.F.; Ling, J.G.; Su, H.Y.; Jin, W.; Zhang, Y.J.; et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground/air background. China Sci. Data 2020, 5, 291–302. [Google Scholar]
- Sun, X.L.; Guo, L.C.; Zhang, W.L.; Wang, Z.; Hou, Y.J.; Teng, X.C. A dataset of semi-synthetic detection for small infrared moving targets under complex backgrounds. China Sci. Data 2024, 9, 315–331. [Google Scholar] [CrossRef]
- Qiu, Z.B.; Ma, Y.; Fan, F.; Huang, J.; Wu, M. Adaptive scale patch-based contrast measure for dim and small infrared target detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7000305. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.Y.; Wang, X.Y.; Shen, F.; Pu, T.; Fei, C. Edge and corner awareness-based spatial–temporal tensor model for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10708–10724. [Google Scholar] [CrossRef]
- Han, J.H.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar]
- Nasiri, M.; Chehresa, S. Infrared small target enhancement based on variance difference. Infrared Phys. Technol. 2017, 82, 107–119. [Google Scholar] [CrossRef]
- Gao, C.Q.; Wang, L.; Xiao, Y.X.; Zhao, Q.; Meng, D. Infrared small-dim target detection based on Markov random field guided noise modeling. Pattern Recognit. 2018, 76, 463–475. [Google Scholar] [CrossRef]
- Guan, X.W.; Peng, Z.M.; Huang, S.Q.; Chen, Y. Gaussian scale-space enhanced local contrast measure for small infrared target detection. IEEE Geosci. Remote Sens. Lett. 2019, 17, 327–331. [Google Scholar] [CrossRef]
Scene | Frame Number | Target Size | Image Size (Pixel) | Background Description |
---|---|---|---|---|
(1) | 5 | 2 × 3~3 × 3 | 128 × 128 | Ground background, buildings, strong edges, interfering target |
(2) | 56 | 1 × 2~3 × 3 | 128 × 128 | Sky background, heavy clouds, light clouds, and irregular clouds |
(3) | 12 | 2 × 2~3 × 3 | 128 × 128 | Complex background, irregular clouds, buildings |
(4) | 1 | 4 × 4 | 239 × 256 | Complex background, buildings, irregular clouds |
(5) | 300 | 1 × 2~2 × 3 | 256 × 256 | Complex background, grasslands, land, trees, road, interfering target |
(6) | 300 | 2 × 2~4 × 5 | 256 × 256 | Ground background, grasslands, trees, land, interfering target |
(7) | 600 | 1 × 2~3 × 3 | 256 × 256 | Complex background, mountains, trees, grasslands, land, interfering target |
(8) | 40 | 1 × 1~3 × 3 | 640 × 512 | Complex background, river, trees, sky, irregular buildings |
(9) | 300 | 1 × 1~3 × 3 | 640 × 512 | Sky background, complex clouds |
No. | Algorithms | Parameter Settings | |
---|---|---|---|
1 | Top-hat [19] | the size of the structuring element: 5 × 5. | |
2 | PSTNN [24] | Patch size = 40; | |
Slide step = 40; | |||
3 | MLCM [4] | the size of the local window: N = 3, 5, 7, 9. | |
4 | MPCM [26] | the size of the local window: N = 3, 5, 7, 9. | |
5 | RLCM [27] | k1 = [2,5,9]; k2 = [4,9,16]; | |
6 | TLLCM [29] | G = [1/16, 1/8, 1/16;1/8, 1/4, 1/8; 1/16, 1/8,1/16], the size of the local window: N = 3, 5, 7, 9. | |
7 | ADMD [30] | the size of the local window: N = 3, 5, 7, 9. | |
8 | WSLCM [31] | the size of the local window: N = 7, 9, 11. |
Metrics | Scene | Tophat | PSTNN | MLCM | MPCM | RLCM | TLLCM | ADMD | WSLCM | Proposed |
---|---|---|---|---|---|---|---|---|---|---|
BSF | (1) | 0.1319 | 1.1412 | 0.4167 | 0.3970 | 0.2093 | 0.3453 | 0.3277 | 0.8058 | 1.2868 |
(2) | 0.5033 | 1.0554 | 0.6308 | 1.0590 | 0.7648 | 1.3231 | 1.2248 | 2.9684 | 4.1692 | |
(3) | 0.2643 | 1.0817 | 0.5208 | 0.6541 | 0.3722 | 0.6262 | 0.6898 | 1.4445 | 2.2019 | |
(4) | 1.1729 | 6.6360 | 1.0357 | 2.7564 | 2.2310 | 4.4878 | 4.3126 | 7.4265 | 8.2999 | |
(5) | 0.9550 | 2.9437 | 0.8790 | 4.3504 | 1.8865 | 3.9286 | 4.7129 | 9.0498 | 11.4142 | |
(6) | 1.4025 | 9.3873 | 1.6599 | 4.2905 | 4.4090 | 5.2247 | 6.3937 | 21.9804 | 20.9017 | |
(7) | 2.4759 | 8.1856 | 1.6289 | 6.2315 | 3.9285 | 5.4106 | 7.1858 | 13.3868 | 21.9069 | |
(8) | 2.4225 | 9.9176 | 1.6819 | 11.5507 | 7.9404 | 13.3491 | 18.1715 | 32.3202 | 36.6030 | |
(9) | 3.0343 | 16.0856 | 3.8622 | 12.8567 | 12.2055 | 17.9148 | 18.2355 | 67.4762 | 66.4039 | |
CG | (1) | 5.1274 | 5.3791 | 1.2865 | 5.3788 | 4.5710 | 5.3788 | 5.3855 | 5.3920 | 5.3933 |
(2) | 3.7521 | 3.8000 | 1.4225 | 3.5365 | 3.1365 | 3.7560 | 3.5324 | 3.6117 | 3.8032 | |
(3) | 4.0160 | 4.1135 | 1.3398 | 4.1017 | 3.3436 | 4.1068 | 4.1086 | 4.1153 | 4.1206 | |
(4) | 3.1757 | 3.5660 | 1.4187 | 3.8880 | 3.5994 | 2.6167 | 3.8916 | 3.9022 | 3.9066 | |
(5) | 1.8675 | 2.0122 | 1.0177 | 0.9044 | 0.9966 | 1.3907 | 0.9219 | 0.2507 | 2.0394 | |
(6) | 1.6938 | 1.8440 | 1.0404 | 1.8419 | 1.5864 | 1.8456 | 1.8464 | 1.8480 | 1.8494 | |
(7) | 1.4734 | 1.5380 | 1.0163 | 1.5374 | 1.1585 | 1.5399 | 1.5391 | 1.5051 | 1.5431 | |
(8) | 1.6102 | 1.7462 | 1.2280 | 0.2541 | 1.3652 | 0.8816 | 0.2168 | 1.1641 | 1.7541 | |
(9) | 1.6527 | 1.7111 | 1.0730 | 0.1555 | 1.2209 | 0.9613 | 0.2856 | 1.1630 | 1.7115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Jiang, H.; Song, Y.; Dong, K. Precision Detection of Infrared Small Target in Ground-to-Air Scene. Remote Sens. 2024, 16, 4230. https://doi.org/10.3390/rs16224230
Dong X, Jiang H, Song Y, Dong K. Precision Detection of Infrared Small Target in Ground-to-Air Scene. Remote Sensing. 2024; 16(22):4230. https://doi.org/10.3390/rs16224230
Chicago/Turabian StyleDong, Xiaona, Huilin Jiang, Yansong Song, and Keyan Dong. 2024. "Precision Detection of Infrared Small Target in Ground-to-Air Scene" Remote Sensing 16, no. 22: 4230. https://doi.org/10.3390/rs16224230
APA StyleDong, X., Jiang, H., Song, Y., & Dong, K. (2024). Precision Detection of Infrared Small Target in Ground-to-Air Scene. Remote Sensing, 16(22), 4230. https://doi.org/10.3390/rs16224230