Atmospheric Boundary Layer Stability in Urban Beijing: Insights from Meteorological Tower and Doppler Wind Lidar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Instrumentation
2.2. Methodology
2.2.1. Radiation and Heat Flux
2.2.2. Calculation of the Urban Boundary Layer Height
2.2.3. Definition of the Stability Regimes
3. Results
3.1. Key Features Associated with Urban Boundary Layer
3.2. Atmospheric Stability Classification Analysis from Richardson Number
3.3. Drivers of Atmospheric Stability
3.4. Turbulence and UBH Features Based on Stability Regime
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garratt, J.R. Review: The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Rotach, M.W. Turbulence Close to a Rough Urban Surface. 1. Reynolds Stress. Bound. Layer Meteorol. 1993, 65, 1–28. [Google Scholar] [CrossRef]
- Kotthaus, S.; Grimmond, C.S.B. Energy exchange in a dense urban environment—Part I: Temporal variability of long-term observations in central London. Urban Clim. 2014, 10, 261–280. [Google Scholar] [CrossRef]
- Bou-Zeid, E.; Anderson, W.; Katul, G.; Mahrt, L. The Persistent Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review. Bound. Layer Meteorol. 2020, 177, 227–245. [Google Scholar] [CrossRef]
- Barlow, J.; Halios, C.; Lane, S.; Wood, C. Observations of urban boundary layer structure during a strong urban heat island event. Environ. Fluid Mech. 2015, 15, 373–398. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kuwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 2–189. [Google Scholar]
- Platis, A.; Hundhausen, M.; Lampert, A.; Emeis, S.; Bange, J. The Role of Atmospheric Stability and Turbulence in Offshore Wind-Farm Wakes in the German Bight. Bound. Layer Meteorol. 2022, 182, 441–469. [Google Scholar] [CrossRef]
- Banta, R.M.; Mahrt, L.; Vickers, D.; Sun, J.; Balsley, B.B.; Pichugina, Y.L.; Williams, E.J. The Very Stable Boundary Layer on Nights with Weak Low-Level Jets. J. Atmos. Sci. 2007, 64, 3068–3090. [Google Scholar] [CrossRef]
- Jericevic, A.; Grisogono, B. The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus A 2006, 58, 19–27. [Google Scholar] [CrossRef]
- Acevedo, O.C.; Maroneze, R.; Costa, F.D.; Puhales, F.S.; Degrazia, G.A.; Nogueira Martins, L.G.; Soares de Oliveira, P.E.; Mortarini, L. The nocturnal boundary layer transition from weakly to very stable. Part I: Observations. Q. J. R. Meteor. Soc. 2019, 145, 3577–3592. [Google Scholar] [CrossRef]
- Banta, R.M. Stable-boundary-layer Regimes from the Perspective of the Low-level Jet. Acta Geophys. 2008, 56, 58–87. [Google Scholar] [CrossRef]
- Jozef, G.C.; Cassano, J.J.; Dahlke, S.; Dahlke, M.; Cox, C.J.; de Boer, G. Thermodynami c and kinematic drivers of atmospheric boundary layer stability in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). Atmos. Chem. Phys. 2023, 20, 13087–13106. [Google Scholar] [CrossRef]
- Tucker, S.C.; Senff, C.J.; Weickmann, A.M.; Brewer, W.A.; Banta, R.M.; Sandberg, S.P.; Law, D.C.; Hardesty, R.M. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Ocean. Technol. 2009, 26, 673–688. [Google Scholar] [CrossRef]
- Oke, T.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; pp. 156–199. [Google Scholar]
- Li, Z.Q.; Guo, J.P.; Ding, A.J.; Liao, H.; Liu, J.J.; Sun, Y.L.; Wang, T.J.; Xue, H.W.; Zhang, H.S.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Wang, L.L.; Fan, S.H.; Hu, F.; Miao, S.G.; Yang, A.Q.; Li, Y.B.; Liu, J.J.; Liu, C.W.; Chen, S.S.; Ho, H.C.; et al. Vertical Gradient Variations in Radiation Budget and Heat Fluxes in the Urban Boundary Layer: A Comparison Study Between Polluted and Clean Air Episodes in Beijing During Winter. J. Geophys. Res. Atmos. 2020, 125, e2020JD032478. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Wang, L.L.; Cheng, X.L.; Xu, W.Q.; Shi, Y.; Zhou, W.; Li, Y.; Hu, F.; Gao, Z.Q.; et al. Exploring Boundary Layer Physics and Atmospheric Chemistry in Megacities: Insights from the Beijing 325 m Meteorological Tower. Adv. Atmos. Sci. 2024. [Google Scholar] [CrossRef]
- Chen, S.S.; Hu, D.; Wong, M.S.; Ren, H.; Cao, S.; Yu, C.; Ho, H.C. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing–Tianjin–Hebei region in China. Environ. Pollut. 2019, 249, 923–931. [Google Scholar] [CrossRef]
- Huang, M.; Gao, Z.Q.; Miao, S.G.; Chen, F.; LeMone, M.A.; Li, J.; Hu, F.; Wang, L.L. Estimate of boundary-layer depth over Beijing, China, using Doppler Lidar data during SURF-2015. Bound. Layer Meteorol. 2017, 162, 503–522. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Gao, Z.; Li, Y.; Huang, M.; Fan, S.; Zhang, X.; Yang, Y.; Miao, S.; Zou, H.; et al. Observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes. Atmos. Chem. Phys. 2019, 19, 6949–6967. [Google Scholar] [CrossRef]
- Vogelezang, D.H.P.; Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulation. Bound. Layer Meteorol. 1996, 81, 245–269. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, S.; Wang, L.; Gao, Z.; Zhang, Y.; Zou, H.; Miao, S.; Li, Y.; Huang, M.; Yim, S.; et al. Diurnal Evolution of the Wintertime Boundary Layer in Urban Beijing, China: Insights from Doppler Lidar and a 325-m Meteorological Tower. Remote Sens. 2020, 12, 3935. [Google Scholar] [CrossRef]
- Chambers, S.D.; Podstawczyńska, A.; Pawlak, W.; Fortuniak, K.; Williams, A.G.; Griffiths, A.D. Characterizing the State of the Urban Surface Layer Using Radon-222. J. Geophys. Res. Atmos. 2019, 124, 770–788. [Google Scholar] [CrossRef]
- Wang, L.L.; Gao, Z.Q.; Pan, Z.T.; Guo, X.F.; Bou-Zeid, E. Evaluation of Turbulent Surface Flux Parameterizations Over Tall Grass in a Beijing Suburb. J. Hydrometeorol. 2013, 14, 1620–1630. [Google Scholar] [CrossRef]
- Liu, J.K.; Gao, Z.Q.; Wang, L.L.; Li, Y.B.; Gao, C.Y. The impact of urbanization on wind speed and surface aerodynamic characteristics in Beijing during 1991–2011. Meteorol. Atmos. Phys. 2018, 130, 311–324. [Google Scholar] [CrossRef]
- Miao, S.G.; Dou, J.X.; Chen, F.; Li, J.; Li, A.G. Analysis of observations on the urban surface energy balance in Beijing. Sci. China Earth Sci. 2018, 55, 1881–1890. [Google Scholar] [CrossRef]
- Dou, J.X.; Grimmond, C.S.B.; Cheng, Z.; Miao, S.; Feng, D.; Liao, M. Summertime surface energy balance fluxes at two Beijing sites. Int. J. Climatol. 2019, 39, 2793–2810. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Yang, L.; Wang, L.; Gao, Z. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett. 2015, 10, 054009. [Google Scholar] [CrossRef]
- Dou, J.X.; Grimmond, C.S.B.; Miao, S.; Huang, B.; Lei, H.M.; Liao, M.S. Surface energy balance fluxes in a suburban area of Beijing: Energy partitioning variability. Atmos. Chem. Phys. 2023, 20, 13143–13166. [Google Scholar] [CrossRef]
- Halios, C.H.; Barlow, J.F. Observations of the Morning Development of the Urban Boundary Layer Over London, UK, Taken During the ACTUAL Project. Bound.-Layer Meteorol. 2018, 166, 395–422. [Google Scholar] [CrossRef]
- Argyle, P.; Watson, S.J. Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations. J. Wind Eng. Ind. Aerod. 2014, 131, 88–99. [Google Scholar] [CrossRef]
- Helfter, C.; Tremper, A.H.; Halios, C.H.; Kotthaus, S.; Bjorkegren, A.; Grimmond, C.S.B.; Barlow, J.F.; Nemitz, E. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmos. Chem. Phys. 2016, 16, 10543–10557. [Google Scholar] [CrossRef]
- Fan, S.; Gao, Y.; Wang, L.; Yang, Y.; Liu, Z.; Hu, B.; Wang, Y.; Wang, J.; Gao, Z. Elucidating roles of near-surface vertical layer structure in different stages of PM2.5 pollution episodes over urban Beijing during 2004–2016. Atmos. Environ. 2021, 246, 118157. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.M.; Dai, Y.F.; Yang, A.Q. Impact of urbanization on boundary layer structure in Beijing. Clim. Chang. 2013, 120, 123–136. [Google Scholar] [CrossRef]
- Komatsu, H.; Hotta, N.; Takizawa, H.; Kuraji, K.; Suzuki, M.; Oki, T. Classification of vertical wind speed profiles observed above a sloping forest at nighttime using the bulk richardson number. Bound. Layer Meteorol. 2005, 106, 573–592. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Theeuwes, N.E.; Barlow, J.F.; Steeneveld, G.-J. Interactions Between the Nocturnal Low-Level Jets and the Urban Boundary Layer: A Case Study over London. Bound. Layer Meteorol. 2022, 183, 246–272. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteorol. 1999, 38, 922–940. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Z.H.; Oechel, W.C.; Grimmond, C.S.B. The Analytical Objective Hysteresis Model (AnOHM v1.0): Methodology to determine bulk storage heat flux coefficients. Geosci. Model Dev. 2017, 12, 2875–2890. [Google Scholar] [CrossRef]
- Wang, H.F.; Li, Z.Q.; Lv, Y.; Zhang, Y.; Xu, H.; Guo, J.P.; Goloub, P. Determination and climatology of the diurnal cycle of the atmospheric mixing layer height over Beijing 2013–2018: Lidar measurements and implications for air pollution. Atmos. Chem. Phys. 2020, 20, 8839–8854. [Google Scholar] [CrossRef]
- Kotthaus, S.; Grimmond, C.S.B. Atmospheric Boundary Layer Characteristics from Ceilometer Measurements Part 1: A new method to track mixed layer height and classify clouds. Q. J. R. Meteor. Soc. 2018, 144, 1525–1538. [Google Scholar] [CrossRef]
- Brooks, I.M.; Tjernström, M.; Persson, P.O.G.; Shupe, M.D.; Atkinson, R.A.; Canut, G.; Birch, C.E.; Mauritsen, T.; Sedlar, J.; Brooks, B.J. The Turbulent Structure of the Arctic Summer Boundary Layer During the Arctic Summer Cloud-Ocean Study. J. Geophys. Res. Atmos. 2017, 122, 9685–9704. [Google Scholar] [CrossRef]
- Banta, R.M.; White, A.B. Mixing-height differences between land use types: Dependence on wind speed. J. Geophys. Res. Atmos. 2003, 108, D10. [Google Scholar] [CrossRef]
- Jozef, G.C.; Cassano, J.J.; Dahlke, S.; Dice, M.; Cox, C.J.; de Boer, G. An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC. Atmos. Chem. Phys. 2024, 24, 1429–1450. [Google Scholar] [CrossRef]
- Jonathan, D.W.K.; Hillary, L. Chapman: Atmospheric stability characterization using the Pasquill method: A critical evaluation. Atmos. Environ. 2018, 187, 196–209. [Google Scholar]
- Sun, J.; Mahrt, L.; Banta, R.; Pichugina, Y. Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci. 2012, 69, 338–351. [Google Scholar] [CrossRef]
- Mahrt, L.; Acevedo, O. Types of Vertical Structure of the Nocturnal Boundary Layer. Bound. Layer Meteorol. 2023, 187, 141–161. [Google Scholar] [CrossRef]
- Pasquill, F. The estimation of the dispersion of windborne material. Meteorol. Mag. 1961, 90, 33–49. [Google Scholar]
- Kawai, T.; Kanda, M. Urban energy balance obtained from the comprehensive outdoor scale model experiment. Part I: Basic features of the surface energy balance. J. Appl. Meteorol. Clim. 2010, 49, 1341–1359. [Google Scholar] [CrossRef]
- Moriwaki, R.; Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. Clim. 2004, 43, 1700–1710. [Google Scholar] [CrossRef]
- Oke, T.R.; Spronken-Smith, R.A.; Jáuregui, E.; Grimmond, C.S. The energy balance of central Mexico city during the dry season. Atmos. Environ. 1999, 33, 3919–3930. [Google Scholar] [CrossRef]
Sensor Type | Measurement | Unit | Sampling Frequency | Observation Height |
---|---|---|---|---|
010C | WS | m s−1 | 0.1 Hz | 8/15/47/65/80/100/120/140/160/180/200/240/280/320 m |
HMP54C | T | °C | 0.1 Hz | 8/15/47/65/80/100/120/140/160/180/200/240/280/320 m |
CNR1 | four-component radiation | W m−2 | 0.1 Hz | 47 m |
Gill | 3 wind components | m s−1 | 10 Hz | 47 m |
WindCube200 | radial velocity | m s−1 | 4–5 s (for angles of 75°) 2–3 s (for angles of 90°) | From 100 m to several kilometers (vertical range resolution of 50 m) |
TEOM 1400a | PM10 | μg m−3 | 5 min | on the rooftop of a two-story building |
Stability Regimes | |
---|---|
< −2 | strong unstable |
−2 ≤ < −0.1 | unstable |
−0.1 ≤ < 0.1 | neutral |
0.1 ≤ < 0.25 | stable |
≥ 0.25 | strong stable |
Month | WS (m s−1) | (W m−2) | (W m−2) | (W m−2) | (W m−2) | / | /TKE (m s−1)/(m2 s−2) | UBH (m) |
---|---|---|---|---|---|---|---|---|
/ | 2/8/47 m | 47 m | 47 m | 47 m | 47 m | 47 m | 47 m | / |
1 | 1.0/1.5/2.8 | 288.4 | 100.2 | 12.7 | 175.5 | 60.9% | 0.4/2.4 | 455.2 |
2 | 1.2/1.8/3.5 | 387.6 | 132.9 | 15.8 | 238.9 | 61.6% | 0.5/3.5 | 756.3 |
3 | 1.1/1.3/2.5 | 418.7 | 132.4 | 22.2 | 264.1 | 63.1% | 0.3/2.2 | 615.8 |
4 | 1.1/1.4/2.9 | 541.1 | 150.2 | 56.9 | 334.0 | 61.7% | 0.4/2.7 | 629.3 |
5 | 0.9/1.1/2.7 | 517.1 | 120.7 | 103.5 | 292.9 | 56.7% | 0.4/2.5 | 723.3 |
6 | 0.9/0.9/2.4 | 533.7 | 118.1 | 112.9 | 302.7 | 56.7% | 0.3/1.9 | 676.0 |
7 | 0.7/0.9/2.2 | 392.1 | 78.0 | 89.8 | 222.3 | 56.7% | 0.2/1.4 | 588.4 |
8 | 0.6/0.9/2.0 | 467.7 | 68.6 | 113.4 | 285.7 | 61.1% | 0.2/1.3 | 587.5 |
9 | 0.7/0.9/2.0 | 440.0 | 97.3 | 87.2 | 255.5 | 58.1% | 0.2/1.4 | 492.8 |
10 | 0.6/0.9/2.0 | 269.6 | 64.7 | 54.4 | 150.5 | 55.8% | 0.2/1.1 | 466.8 |
11 | 0.8/1.1/2.4 | 252.6 | 71.0 | 22.2 | 159.4 | 63.1% | 0.2/1.5 | 432.3 |
12 | 0.8/1.1/2.1 | 240.1 | 74.6 | 12.4 | 153.1 | 63.8% | 0.2/1.5 | 393.0 |
Number | Start Time (BJT) | End Time (BJT) | Averaged PM10 (μg m−3) |
---|---|---|---|
1 | 00:00 1 January | 10:45 2 January | 271.6 |
2 | 23:00 1 March | 11:45 2 March | 315.8 |
3 | 19:05 4 November | 11:05 4 November | 185.2 |
4 | 00:00 4 December | 12:00 4 December | 414.3 |
5 | 22:00 18 December | 10:20 19 December | 257.0 |
6 | 18:00 19 December | 11:15 20 December | 296.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wan, B.; Yang, Y.; Fan, S.; Jing, Y.; Cheng, X.; Gao, Z.; Miao, S.; Zou, H. Atmospheric Boundary Layer Stability in Urban Beijing: Insights from Meteorological Tower and Doppler Wind Lidar. Remote Sens. 2024, 16, 4246. https://doi.org/10.3390/rs16224246
Wang L, Wan B, Yang Y, Fan S, Jing Y, Cheng X, Gao Z, Miao S, Zou H. Atmospheric Boundary Layer Stability in Urban Beijing: Insights from Meteorological Tower and Doppler Wind Lidar. Remote Sensing. 2024; 16(22):4246. https://doi.org/10.3390/rs16224246
Chicago/Turabian StyleWang, Linlin, Bingcheng Wan, Yuanjian Yang, Sihui Fan, Yi Jing, Xueling Cheng, Zhiqiu Gao, Shiguang Miao, and Han Zou. 2024. "Atmospheric Boundary Layer Stability in Urban Beijing: Insights from Meteorological Tower and Doppler Wind Lidar" Remote Sensing 16, no. 22: 4246. https://doi.org/10.3390/rs16224246
APA StyleWang, L., Wan, B., Yang, Y., Fan, S., Jing, Y., Cheng, X., Gao, Z., Miao, S., & Zou, H. (2024). Atmospheric Boundary Layer Stability in Urban Beijing: Insights from Meteorological Tower and Doppler Wind Lidar. Remote Sensing, 16(22), 4246. https://doi.org/10.3390/rs16224246