Deep Learning Model Size Performance Evaluation for Lightning Whistler Detection on Arase Satellite Dataset
Abstract
:1. Introduction
2. Lightning Whistlers Data Set
2.1. Arase
2.2. Lightning Whistlers Observed by Arase
- (a)
- Nose whistler: This type of whistler is characterized by a frequency–time curve displaying both ascending and descending branches. The minimal delay occurs at the frequency corresponding to the nose.
- (b)
- Short whistler: This type has a simple one-way path that goes from a higher frequency to a lower frequency. It has a duration of less than a second.
- (c)
- Middle whistler: This type has a one-way path with a slight curve that goes from a higher frequency to a lower frequency. It has a duration between 1 and 2 s.
- (d)
- Long whistler: This type has a one-way path that goes from a higher frequency to a lower frequency. It has a duration of more than 2 s.
3. Detection Process
3.1. System Overview
3.2. Data Acquisition
3.3. Data Preprocessing
3.4. Training
3.5. Result and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VLF | Very Low Frequency |
YOLO | You Only Look Once |
WFC | Waveform Capture |
PWE | Plasma Wave Experiment |
PySPEDAS | Python Space Physics Environment Data Analysis Software |
References
- Kimura, I.; Tsunehara, K.; Hikuma, A.; Su, Y.Z.; Kasahara, Y.; Oya, H. Global electron density distribution in the plasmasphere deduced from Akebono wave data and the IRI model. J. Atmos.-Sol.-Terr. Phys. 1997, 59, 13. [Google Scholar] [CrossRef]
- Kimura, I.; Kasahara, Y.; Oya, H. Determination of global plasmaspheric electron density profile by tomographic approach using OMEGA signals and ray tracing. J. Atmos.-Sol.-Terr. Phys. 2001, 63, 11. [Google Scholar] [CrossRef]
- Suarjaya, I.M.A.D.; Kasahara, Y.; Goto, Y. Automatic Detection of OMEGA signals Captured by the Poynting Flux Analyzer (PFX) on Board the Akebono Satellite. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2016, 7, 10. [Google Scholar]
- Kimura, I.; Hashimoto, K.; Nagano, I.; Okada, T.; Yamamoto, M.; Yoshino, T.; Matsumoto, H.; Ejiri, M.; Hayashi, K. VLF Observations by the Akebono (EXOS-D) Satellite. J. Geomag. Geoelectr. 1990, 42, 459–478. [Google Scholar] [CrossRef]
- Suarjaya, I.M.A.D.; Kasahara, Y.; Goto, Y. Statistical study on propagation characteristics of OMEGA signals (VLF) in magnetosphere detected by the Akebono satellite. Earth Planets Space 2017, 69, 100. [Google Scholar] [CrossRef]
- Storey, L.R.O. An investigation of whistling atmospherics. Phil. Trans. Roy. Soc. Lond. A 1953, 246, 113–141. [Google Scholar] [CrossRef]
- Carpenter, D.L. Remote sensing the magnetospheric plasma by means of whistler mode signals. Rev. Geophys. 1988, 26, 535–549. [Google Scholar] [CrossRef]
- Bayupati, I.P.A.; Kasahara, Y.; Goto, Y. Study of dispersion of lightning whistler observed by akebono satellite in the earth’s plasmasphere. IEICE Trans. Commun. 2012, 95, 3472–3479. [Google Scholar] [CrossRef]
- Putri, D.P.S.; Kasahara, Y.; Ota, M.; Matsuda, S.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Miyoshi, Y. A Proposal for Modification of Plasmaspheric Electron Density Profiles Using Characteristics of Lightning Whistlers. Remote Sens. 2023, 15, 1306. [Google Scholar] [CrossRef]
- Ahmad, U.A.; Kasahara, Y.; Matsuda, S.; Ozaki, M.; Goto, Y. Automatic Detection of Lightning Whistlers Observed by the Plasma Wave Experiment Onboard the Arase Satellite Using the OpenCV Library. Remote Sens. 2019, 11, 1785. [Google Scholar] [CrossRef]
- Joseph, R.; Santosh, D.; Ross, G.; Ali, F. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Miyoshi, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Kazama, Y.; Wang, S.-Y.; et al. Geospace Exploration Project ERG. Earth Planets Space 2018, 70, 101. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Kumamoto, A.; Tsuchiya, F.; Ozaki, M.; Matsuda, S.; Imachi, T.; et al. The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite. Earth Planets Space 2018, 70, 86. [Google Scholar] [CrossRef]
- Kasaba, Y.; Ishisaka, K.; Kasahara, Y.; Imachi, T.; Yagitani, S.; Kojima, H.; Matsuda, S.; Shoji, M.; Kurita, S.; Hori, T.; et al. Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard the Arase satellite: Specifications and initial evaluation results. Earth Planets Space 2017, 69, 174. [Google Scholar] [CrossRef]
- Ozaki, M.; Yagitani, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Kumamoto, A.; Tsuchiya, F.; Matsuda, S.; Matsuoka, A.; Sasaki, T.; et al. Magnetic Search Coil (MSC) of Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite. Earth Planets Space 2018, 70, 76. [Google Scholar] [CrossRef]
- Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kumamoto, A.; Tsuchiya, F.; et al. Onboard software of plasma wave experiment aboard arase: Instrument management and signal processing of waveform capture/onboard frequency analyzer. Earth Planets Space 2018, 70, 75. [Google Scholar] [CrossRef]
- Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; et al. High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft. Earth Planets Space 2018, 70, 82. [Google Scholar] [CrossRef]
- Matsuoka, A.; Teramoto, M.; Nomura, R.; Nosé, M.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Nagatsuma, T.; Shiokawa, K.; Obana, Y.; et al. The ARASE (ERG) magnetic field investigation. Earth Planets Space 2018, 70, 43. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kojima, H.; Matsuda, S.; Ozaki, M.; Yagitani, S.; Shoji, M.; Nakamura, S.; Kitahara, M.; Shinohara, I.; Miyoshi, Y. The PWE/WFC Instrument Level-2 Magnetic Field Spectrum Data of Exploration of Energization and Radiation in Geospace (ERG) Arase satellite; ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University: Nagoya, Japan; Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency: Kanagawa, Japan, 2020. [Google Scholar] [CrossRef]
- Grimes, E.W.; Harter, B.; Hatzigeorgiu, N.; Drozdov, A.; Lewis, J.W.; Angelopoulos, V.; Cao, X.; Chu, X.; Hori, T.; Matsuda, S.; et al. The Space Physics Environment Data Analysis System in Python. Front. Astron. Space Sci. 2022, 9, 1020815. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Hori, T.; Shoji, M.; Teramoto, M.; Chang, T.F.; Segawa, T.; Umemura, N.; Matsuda, S.; Kurita, S.; Keika, K.; et al. The ERG Science Center. Earth Planets Space 2018, 70, 96. [Google Scholar] [CrossRef]
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Stanford University Press: Stanford, CA, USA, 1965. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 11. [Google Scholar] [CrossRef]
- Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Lee, X. PolygonObjectDetection. 2021. Available online: https://github.com/XinzeLee/PolygonObjectDetection (accessed on 5 January 2024).
- Daniel, D.; Pavel, S.; Simona, R. Investigation of YOLOv5 Efficiency in iPhone Supported Systems. Balt. J. Mod. Comput. 2021, 9, 333–344. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Hoshino, N.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Matsuoka, A.; Shinohara, I.; Takashima, T.; ERG Science Center Team. The ERG science center; operation and data archives for the ERG project. Earth Planets Space 2018, 70, 96. [Google Scholar] [CrossRef]
Model | Filesize | 0.5 | 0.5:0.95 |
---|---|---|---|
YOLOv5l | 89.5MB | 0.245 | 0.101 |
YOLOv5m | 40.6MB | 0.371 | 0.114 |
YOLOv5s | 13.8MB | 0.32 | 0.103 |
YOLOv5n | 3.7MB | 0.186 | 0.0773 |
Predicted | Short | 0.65 | 0.50 | 0.20 | 0 | 0.89 |
Long | 0 | 0 | 0 | 0 | 0 | |
Middle | 0.07 | 0 | 0.60 | 0 | 0.11 | |
Nose | 0 | 0 | 0 | 0 | 0 | |
Bg FN | 0.27 | 0.50 | 0.20 | 1.00 | 0 | |
Short | Long | Middle | Nose | Bg FP | ||
True |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarjaya, I.M.A.D.; Putri, D.P.S.; Tanaka, Y.; Purnama, F.; Bayupati, I.P.A.; Linawati; Kasahara, Y.; Matsuda, S.; Miyoshi, Y.; Shinohara, I. Deep Learning Model Size Performance Evaluation for Lightning Whistler Detection on Arase Satellite Dataset. Remote Sens. 2024, 16, 4264. https://doi.org/10.3390/rs16224264
Suarjaya IMAD, Putri DPS, Tanaka Y, Purnama F, Bayupati IPA, Linawati, Kasahara Y, Matsuda S, Miyoshi Y, Shinohara I. Deep Learning Model Size Performance Evaluation for Lightning Whistler Detection on Arase Satellite Dataset. Remote Sensing. 2024; 16(22):4264. https://doi.org/10.3390/rs16224264
Chicago/Turabian StyleSuarjaya, I Made Agus Dwi, Desy Purnami Singgih Putri, Yuji Tanaka, Fajar Purnama, I Putu Agung Bayupati, Linawati, Yoshiya Kasahara, Shoya Matsuda, Yoshizumi Miyoshi, and Iku Shinohara. 2024. "Deep Learning Model Size Performance Evaluation for Lightning Whistler Detection on Arase Satellite Dataset" Remote Sensing 16, no. 22: 4264. https://doi.org/10.3390/rs16224264
APA StyleSuarjaya, I. M. A. D., Putri, D. P. S., Tanaka, Y., Purnama, F., Bayupati, I. P. A., Linawati, Kasahara, Y., Matsuda, S., Miyoshi, Y., & Shinohara, I. (2024). Deep Learning Model Size Performance Evaluation for Lightning Whistler Detection on Arase Satellite Dataset. Remote Sensing, 16(22), 4264. https://doi.org/10.3390/rs16224264