Full-Aperture Reflective Remote Fourier Ptychography with Sample Matching
Abstract
:1. Introduction
2. Principle
2.1. Imaging Theory of FP
2.2. Reconstruction Algorithm
3. Analysis of Sample-Matching Conditions
3.1. Analysis of Sampling Conditions in the Spatial Domain
3.2. Interception of the Fourier Spectrum Under the Critical Sampling Condition
4. Simulation and Experimental Results of the Reflected Diffuse Samples
4.1. Simulation Results and Analysis
4.2. The Experimental Results and Analysis
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Van Belle, G.T.; Meinel, A.B.; Meinel, M.P. The scaling relationship between telescope cost and aperture size for very large telescopes. Ground-Based Telesc. 2004, 5489, 563–570. [Google Scholar]
- Daukantas, P. James Webb Space Telescope: A Sparkling Optical Success. Opt. Photonics News 2023, 34, 28–35. [Google Scholar] [CrossRef]
- McElwain, M.W.; Feinberg, L.D.; Kimble, R.A.; Bowers, C.W.; Knight, J.S.; Niedner, M.B.; Perrin, M.D.; Rigby, J.R.; Smith, E.C.; Stark, C.C. Status of the james webb space telescope mission. Proc. SPIE 2020, 11443, 173–181. [Google Scholar]
- Cassaing, F.; Sorrente, B.; Fleury, B.; Laubier, D. Optical design of a Michelson wide-field multiple-aperture telescope. Opt. Des. Eng. 2004, 5249, 220–229. [Google Scholar]
- Mait, J.N.; Euliss, G.W.; Athale, R.A. Computational imaging. Adv. Opt. Photonics 2018, 10, 409–483. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Wang, Y.; Liu, J.; Zhou, F.; Xiang, W.; Zhang, Y.; Yang, H.; Cai, C.; Liu, F. Future-proof imaging: Computational imaging. Adv. Imaging 2024, 1, 012001. [Google Scholar] [CrossRef]
- Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef]
- Willig, K.I.; Rizzoli, S.O.; Westphal, V.; Jahn, R.; Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006, 440, 935–939. [Google Scholar] [CrossRef]
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef]
- Wang, D.; Han, Y.; Zhao, J.; Rong, L.; Wang, Y.; Lin, S. Enhanced image reconstruction of Fourier ptychographic microscopy with double-height illumination. Opt. Express 2021, 29, 41655–41669. [Google Scholar] [CrossRef]
- Shu, Y.; Sun, J.; Lyu, J.; Fan, Y.; Zhou, N.; Ye, R.; Zheng, G.; Chen, Q.; Zuo, C. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 2022, 3, 24. [Google Scholar] [CrossRef]
- Zheng, G.; Shen, C.; Jiang, S.; Song, P.; Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 2021, 3, 207–223. [Google Scholar] [CrossRef]
- Zuo, C.; Sun, J.; Li, J.; Asundi, A.; Chen, Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 2020, 128, 106003. [Google Scholar] [CrossRef]
- Dong, S.; Horstmeyer, R.; Shiradkar, R.; Guo, K.; Ou, X.; Bian, Z.; Xin, H.; Zheng, G. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express 2014, 22, 13586–13599. [Google Scholar] [CrossRef]
- Holloway, J.; Asif, M.S.; Sharma, M.K.; Matsuda, N.; Horstmeyer, R.; Cossairt, O.; Veeraraghavan, A. Toward long-distance subdiffraction imaging using coherent camera arrays. IEEE Trans. Comput. Imaging 2016, 2, 251–265. [Google Scholar] [CrossRef]
- Holloway, J.; Wu, Y.; Sharma, M.K.; Cossairt, O.; Veeraraghavan, A. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci. Adv. 2017, 3, e1602564. [Google Scholar] [CrossRef]
- Yang, M.; Fan, X.; Wang, Y.; Zhao, H. Experimental study on the exploration of camera scanning reflective Fourier ptychography technology for far-field imaging. Remote Sens. 2022, 14, 2264. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Liang, K.; Chen, Q.; Zuo, C. Far-Field Synthetic Aperture Imaging via Fourier Ptychography with Quasi-Plane Wave Illumination. Adv. Photonics Res. 2023, 4, 2300180. [Google Scholar] [CrossRef]
- Xiang, M.; Pan, A.; Zhao, Y.; Fan, X.; Zhao, H.; Li, C.; Yao, B. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography. Opt. Lett. 2020, 46, 29–32. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, M.; Yang, D.; Wang, S.; Pan, A. Optical remote imaging via Fourier ptychography. Photonics Res. 2023, 11, 2072–2083. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Yanny, K.; Monakhova, K.; Shuai, R.W.; Waller, L. Deep learning for fast spatially varying deconvolution. Optica 2022, 9, 96–99. [Google Scholar] [CrossRef]
- Wu, J.; Boominathan, V.; Veeraraghavan, A.; Robinson, J.T. Real-time, deep-learning aided lensless microscope. Biomed. Opt. Express 2023, 14, 4037–4051. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, M.; Takashima, Y.; Schulz, T.J.; Brady, D.J. Snapshot ptychography on array cameras. Opt. Express 2022, 30, 2585–2598. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Chen, Q.; Zuo, C. Learning-based single-shot long-range synthetic aperture Fourier ptychographic imaging with a camera array. Opt. Lett. 2023, 48, 263–266. [Google Scholar] [CrossRef]
- Channappayya, S.S.; Bovik, A.C.; Caramanis, C.; Heath, R.W. Design of linear equalizers optimized for the structural similarity index. IEEE Trans. Image Process. 2008, 17, 857–872. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Meng, J.; Zhao, J.; Wang, R.; Wang, Y.; Rong, L.; Lin, S.; Li, L. Full-Aperture Reflective Remote Fourier Ptychography with Sample Matching. Remote Sens. 2024, 16, 4276. https://doi.org/10.3390/rs16224276
Wang D, Meng J, Zhao J, Wang R, Wang Y, Rong L, Lin S, Li L. Full-Aperture Reflective Remote Fourier Ptychography with Sample Matching. Remote Sensing. 2024; 16(22):4276. https://doi.org/10.3390/rs16224276
Chicago/Turabian StyleWang, Dayong, Jiahao Meng, Jie Zhao, Renyuan Wang, Yunxin Wang, Lu Rong, Shufeng Lin, and Ling Li. 2024. "Full-Aperture Reflective Remote Fourier Ptychography with Sample Matching" Remote Sensing 16, no. 22: 4276. https://doi.org/10.3390/rs16224276
APA StyleWang, D., Meng, J., Zhao, J., Wang, R., Wang, Y., Rong, L., Lin, S., & Li, L. (2024). Full-Aperture Reflective Remote Fourier Ptychography with Sample Matching. Remote Sensing, 16(22), 4276. https://doi.org/10.3390/rs16224276