Influence of Land Use and Land Cover Changes and Precipitation Patterns on Groundwater Storage in the Mississippi River Watershed: Insights from GRACE Satellite Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Groundwater Trends
4.2. Land Use and Land Cover Trends
4.3. Precipitation Trends
4.4. Cropping Pattern Trends
4.5. USGS Well Log Data
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Condon, L.E.; Kollet, S.; Bierkens, M.F.P.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.J.H.; Verhoef, A.; Van Loon, A.F.; Sulis, M.; et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res. 2021, 57, e2020WR029500. [Google Scholar] [CrossRef]
- Eaton, T.T. On the Importance of Geological Heterogeneity for Flow Simulation. Sediment. Geol. 2006, 184, 187–201. [Google Scholar] [CrossRef]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating Groundwater Storage Changes in the Mississippi River Basin (USA) Using GRACE. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Chen, J.; Seneviratne, S.I.; Viterbo, P.; Holl, S.; Wilson, C.R. Basin Scale Estimates of Evapotranspiration Using GRACE and Other Observations. Geophys. Res. Lett. 2004, 31, 10–13. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Rodell, M.; Reager, J.T. Water Cycle Science Enabled by the GRACE and GRACE-FO Satellite Missions. Nat. Water 2023, 1, 47–59. [Google Scholar] [CrossRef]
- Chen, J.L.; Rodell, M.; Wilson, C.R.; Famiglietti, J.S. Low Degree Spherical Harmonic Influences on Gravity Recovery and Climate Experiment (GRACE) Water Storage Estimates. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Chen, J.; Rodell, M.; Seneviratne, S.I.; Viterbo, P.; Wilson, C.R. Total Basin Discharge for the Amazon and Mississippi River Basins from GRACE and a Land-Atmosphere Water Balance. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J.; Hanna, E.; Huybrechts, P. Short Term Mass Variability in Greenland, from GRACE. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements. J. Hydrometeorol. 2006, 7, 252–270. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S. The Potential for Satellite-Based Monitoring of Groundwater Storage Changes Using GRACE: The High Plains Aquifer, Central US. J. Hydrol. 2002, 263, 245–256. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef]
- Zaitchik, B.F.; Rodell, M.; Reichle, R.H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. J. Hydrometeorol. 2008, 9, 535–548. [Google Scholar] [CrossRef]
- Yeh, P.J.F.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote Sensing of Groundwater Storage Changes in Illinois Using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42, 1–7. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field Observations of Soil Moisture Variability across Scales. Water Resour. Res. 2008, 44, 1–16. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The Use of GRACE Data to Monitor Natural and Anthropogenic Induced Variations in Water Availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Agoramoorthy, G. Groundwater Storage and Depletion Trends in Tamil Nadu State, India. Water Resour. Manag. 2015, 29, 2139–2152. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, W.; Zhang, Z.; Guo, H.; Ishwaran, N. Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products. Water Resour. Manag. 2016, 30, 279–294. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, W.; Chen, H.; Guo, H. A Global Hydrological Drought Index Dataset Based on Gravity Recovery and Climate Experiment (GRACE) Data. Water Resour. Manag. 2018, 32, 1275–1290. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling Groundwater Resources in Northern India, from Satellite Gravity Observations. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976.
- Reager, J.T.; Famiglietti, J.S. Characteristic Mega-Basin Water Storage Behavior Using GRACE. Water Resour. Res. 2013, 49, 3314–3329. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Elmore, R.W.; Guzman, J.G.; Hanna, H.M.; Hart, C.E.; Helmers, M.J.; Hodgson, E.W.; Lenssen, A.W.; Mallarino, A.P.; Robertson, A.E.; et al. Drought Impact on Crop Production and the Soil Environment: 2012 Experiences from Iowa. J. Soil Water Conserv. 2013, 68, 19–24. [Google Scholar] [CrossRef]
- Sheil, D. How Plants Water Our Planet: Advances and Imperatives. Trends Plant Sci. 2014, 19, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Delworth, T.L.; Zeng, F. Regional Rainfall Decline in Australia Attributed to Anthropogenic Greenhouse Gases and Ozone Levels. Nat. Geosci. Lett 2014, 7, 583–587. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the Impact of Urbanization on Storm Runoff in a Peri-Urban Catchment Using Historical Change in Impervious Cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
- Schilling, K.E.; Chan, K.S.; Liu, H.; Zhang, Y.K. Quantifying the Effect of Land Use Land Cover Change on Increasing Discharge in the Upper Mississippi River. J. Hydrol. 2010, 387, 343–345. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service Field Crops Usual Planting and Harvesting Dates. Agric. Handb. 2010, 628, 1–51.
- Konikow, L.F.; Kendy, E. Groundwater Depletion: A Global Problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global Depletion of Groundwater Resources. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and Implications of Groundwater Depletion in India: A Review. J. Hydrol. 2021, 596, 126103. [Google Scholar] [CrossRef]
- Meyer, A.F. Effect of Temperature on Ground-Water Levels. J. Geophys. Res. 1960, 65, 1747–1752. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Kollet, S.J. Interdependence of Groundwater Dynamics and Land-Energy Feedbacks under Climate Change. Nat. Geosci. 2008, 1, 665–669. [Google Scholar] [CrossRef]
State | Mann–Kendall Test p-Value | Mann–Kendall Test Tau Value | Sen’s Slope Estimate |
---|---|---|---|
Mississippi | 0.0000664 | −0.21609 | −0.1053 |
Louisiana | 0.000000936 | −0.26569 | −0.07216 |
Arkansas | 0.0000376 | −0.22329 | −0.05038 |
Oklahoma | 0.000000671 | −0.26921 | −0.04676 |
Colorado | 0.002327 | −0.16498 | −0.01302 |
Tennessee | 0.453942 | −0.04064 | −0.00782 |
Kentucky | 0.970379 | −0.00209 | −0.00028 |
North Dakota | 0.5967 | 0.028739 | 0.002648 |
Kansas | 0.356451 | 0.050021 | 0.004662 |
West Virginia | 0.381176 | 0.047507 | 0.005164 |
Indiana | 0.174315 | 0.073649 | 0.009286 |
Missouri | 0.254803 | 0.061751 | 0.009759 |
Ohio | 0.023127 | 0.123083 | 0.016796 |
Wyoming | 0.004164 | 0.155258 | 0.017525 |
Montana | 0.000277 | 0.196984 | 0.021292 |
Pennsylvania | 0.001361 | 0.173523 | 0.02424 |
Illinois | 0.000769 | 0.182237 | 0.028055 |
South Dakota | 0.0000000356 | 0.298534 | 0.042364 |
Wisconsin | 0.0000254 | 0.228152 | 0.043546 |
Minnesota | 0.00024 | 0.198995 | 0.045663 |
Nebraska | 0.00000011 | 0.287641 | 0.050749 |
Iowa | 0.000000000385 | 0.339087 | 0.069212 |
HUC-2 Watersheds | Hydrologic Region | Mann–Kendall Test p-Value | Mann–Kendall Test Tau Value | Sen’s Slope Estimate |
---|---|---|---|---|
08 | Lower Mississippi | 0.000118356 | −0.208546292 | −0.07067408 |
06 | Tennessee | 0.430061102 | −0.042815249 | −0.00734257 |
05 | Ohio | 0.474720228 | 0.038793465 | 0.006503669 |
10 | Missouri | 0.0000807 | 0.213573523 | 0.024593365 |
07 | Upper Mississippi | 0.00000034 | 0.276246334 | 0.046603873 |
Fastest Rate of Groundwater Change | Slowest Rate of Groundwater Change | Highest Groundwater Per Pixel | Lowest Groundwater Per Pixel | |
---|---|---|---|---|
States | Mississippi | Kentucky | South Dakota | Mississippi |
HUC-2 watersheds | Lower Mississippi | Ohio | Missouri | Lower Mississippi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dash, P.; Shekhar, S.; Paul, V.; Feng, G. Influence of Land Use and Land Cover Changes and Precipitation Patterns on Groundwater Storage in the Mississippi River Watershed: Insights from GRACE Satellite Data. Remote Sens. 2024, 16, 4285. https://doi.org/10.3390/rs16224285
Dash P, Shekhar S, Paul V, Feng G. Influence of Land Use and Land Cover Changes and Precipitation Patterns on Groundwater Storage in the Mississippi River Watershed: Insights from GRACE Satellite Data. Remote Sensing. 2024; 16(22):4285. https://doi.org/10.3390/rs16224285
Chicago/Turabian StyleDash, Padmanava, Sushant Shekhar, Varun Paul, and Gary Feng. 2024. "Influence of Land Use and Land Cover Changes and Precipitation Patterns on Groundwater Storage in the Mississippi River Watershed: Insights from GRACE Satellite Data" Remote Sensing 16, no. 22: 4285. https://doi.org/10.3390/rs16224285
APA StyleDash, P., Shekhar, S., Paul, V., & Feng, G. (2024). Influence of Land Use and Land Cover Changes and Precipitation Patterns on Groundwater Storage in the Mississippi River Watershed: Insights from GRACE Satellite Data. Remote Sensing, 16(22), 4285. https://doi.org/10.3390/rs16224285