Incorporating Forest Mapping-Related Uncertainty into the Error Propagation of Wall-to-Wall Biomass Maps: A General Approach for Large and Small Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Analytical Procedure
2.2.1. Satellite Image Pre-Processing
2.2.2. Image Classification
2.2.3. Map Accuracy
2.2.4. Tree AGB Modeling
2.2.5. Remote-Sensing-Based Modeling of Forest AGB
2.3. Uncertainty Analysis
2.3.1. Error Propagation from Tree to Plot
- Stochastically simulate 5000 values for using the Monte Carlo method, assuming , Note: The variances of , ’s, were not reported in [23] and were obtained through personal communication.
- Randomly select a sample of without replacement from the coefficients simulated in the previous step to predict , , and then for all inventoried trees.
- Replicate step (ii) 1000 times.
2.3.2. Error Propagation from Plot to Pixel
- Replicate step (i) 1000 times (this is .
- Using the RF with bootstrap approach, fit Equation (1) using the paired data and predict .
- Let and . Then, estimate the variance of , i.e., .
2.3.3. Forest-Mapping-Related Uncertainty
- Large-area approach
- Small-area approach
2.3.4. Uncertainty Analysis with Error Propagated from Pixel to Forest Mapping
2.4. Variance Estimators
2.4.1. Stratified Random Sampling for Proportions (SRSP) Estimator
2.4.2. Synthetic Estimator
2.4.3. Ratio Estimator
3. Results
3.1. Forest Cover Map
3.2. Mapping and Confidence Interval of Biomass
3.3. Comparing Variance Estimators
4. Discussion
4.1. Sensitivity, Generalization, and Application of Estimators
4.2. Limitation and Comparison with Existent Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
for trees | |
for clusters (plots) | |
for replications | |
for pixels | |
for number of trees in a cluster (plot) | |
for number of clusters | |
for number of replications in a loop | |
for strata (counties) | |
for grand strata (greater regions, Figure 1) | |
for number of pixels sampled for map accuracy analysis | |
for number of pixels sampled for map accuracy analysis in a stratum | |
for number of pixels sampled for map accuracy analysis in a grand stratum | |
for total number of pixels | |
for total number of pixels in a stratum | |
for the total number of strata | |
for the total number of grand strata | |
for total study area, in ha | |
for total area of a county, in ha | |
for total forest area, in ha, and | |
for county’s forest area, in ha |
References
- McRoberts, R.E.; Tomppo, E.; Schadauer, K.; Vidal, C.; Ståhl, G.; Chirici, G.; Lanz, A.; Cienciala, E.; Winter, S.; Smith, W.B. Harmonizing National Forest Inventories. J. For. 2009, 107, 179–187. [Google Scholar] [CrossRef]
- David, H.C.; de Araújo, E.J.G.; Morais, V.A.; Scolforo, J.R.S.; Marques, J.M.; Netto, S.P.; MacFarlane, D.W. Carbon Stock Classification for Tropical Forests in Brazil: Understanding the Effect of Stand and Climate Variables. For. Ecol. Manag. 2017, 404, 241–250. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.T.; Woodall, C.W.; Griffith, D.M. Imputing Forest Carbon Stock Estimates from Inventory Plots to a Nationally Continuous Coverage. Carbon Balance Manag. 2013, 8, 1. [Google Scholar] [CrossRef]
- David, H.C.; MacFarlane, D.W.; Péllico Netto, S.; Corte, A.P.D.; Piotto, D.; de Oliveira, Y.M.; Morais, V.A.; Sanquetta, C.R.; Neto, R.P. Exploring Coarse-to Fine-Scale Approaches for Mapping and Estimating Forest Volume from Brazilian National Forest Inventory Data. For. Int. J. For. Res. 2019, 92, 577–590. [Google Scholar] [CrossRef]
- Deo, R.K.; Domke, G.M.; Russell, M.B.; Woodall, C.W.; Andersen, H.-E. Evaluating the Influence of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-Area Estimation across the Eastern USA. Environ. Res. Lett. 2018, 13, 055004. [Google Scholar] [CrossRef]
- Battles, J.J.; Bell, D.M.; Kennedy, R.E.; Saah, D.S.; Collins, B.M.; York, R.A.; Sanders, J.E.; Lopez-Ornelas, F. Innovations in Measuring and Managing Forest Carbon Stocks in California. Rep. California’s Fourth Clim. Chang. Assess 2018, 99. Available online: https://www.semanticscholar.org/paper/INNOVATIONS-IN-MEASURING-AND-MANAGING-FOREST-CARBON-Battles-Bell/5b1febe933c4a726c1d57a9b1dac6271f54e31d7 (accessed on 12 November 2024).
- Chi, H.; Sun, G.; Huang, J.; Li, R.; Ren, X.; Ni, W.; Fu, A. Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data. Remote Sens. 2017, 9, 707. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Zhang, G.; Ganguly, S.; Nemani, R.R.; White, M.A.; Milesi, C.; Hashimoto, H.; Wang, W.; Saatchi, S.; Yu, Y.; Myneni, R.B. Estimation of Forest Aboveground Biomass in California Using Canopy Height and Leaf Area Index Estimated from Satellite Data. Remote Sens. Environ. 2014, 151, 44–56. [Google Scholar] [CrossRef]
- Brooks, E.B.; Coulston, J.W.; Wynne, R.H.; Thomas, V.A. Improving the Precision of Dynamic Forest Parameter Estimates Using Landsat. Remote Sens. Environ. 2016, 179, 162–169. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the Utility of the Medium-Spatial Resolution Landsat 8 Multispectral Sensor in Quantifying Aboveground Biomass in uMgeni Catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Hauglin, M.; Rahlf, J.; Schumacher, J.; Astrup, R.; Breidenbach, J. Large Scale Mapping of Forest Attributes Using Heterogeneous Sets of Airborne Laser Scanning and National Forest Inventory Data. For. Ecosyst. 2021, 8, 65. [Google Scholar] [CrossRef]
- Lister, A.J.; Andersen, H.; Frescino, T.; Gatziolis, D.; Healey, S.; Heath, L.S.; Liknes, G.C.; McRoberts, R.; Moisen, G.G.; Nelson, M. Use of Remote Sensing Data to Improve the Efficiency of National Forest Inventories: A Case Study from the United States National Forest Inventory. Forests 2020, 11, 1364. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Maack, J.; Lingenfelder, M.; Weinacker, H.; Koch, B. Modelling the Standing Timber Volume of Baden-Württemberg—A Large-Scale Approach Using a Fusion of Landsat, Airborne LiDAR and National Forest Inventory Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 107–116. [Google Scholar] [CrossRef]
- Bohlin, J.; Bohlin, I.; Jonzén, J.; Nilsson, M. Mapping Forest Attributes Using Data from Stereophotogrammetry of Aerial Images and Field Data from the National Forest Inventory. Silva Fenn. 2017, 51, 2021. [Google Scholar] [CrossRef]
- Chen, Q.; Laurin, G.V.; Valentini, R. Uncertainty of Remotely Sensed Aboveground Biomass over an African Tropical Forest: Propagating Errors from Trees to Plots to Pixels. Remote Sens. Environ. 2015, 160, 134–143. [Google Scholar] [CrossRef]
- Coleman, H.W.; Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- McRoberts, R.E.; Moser, P.; Zimermann Oliveira, L.; Vibrans, A.C. A General Method for Assessing the Effects of Uncertainty in Individual-Tree Volume Model Predictions on Large-Area Volume Estimates with a Subtropical Forest Illustration. Can. J. For. Res. 2015, 45, 44–51. [Google Scholar] [CrossRef]
- Mascaro, J.; Detto, M.; Asner, G.P.; Muller-Landau, H.C. Evaluating Uncertainty in Mapping Forest Carbon with Airborne LiDAR. Remote Sens. Environ. 2011, 115, 3770–3774. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Trautenmüller, J.W.; Netto, S.P.; Balbinot, R.; Watzlawick, L.F.; Dalla Corte, A.P.; Sanquetta, C.R.; Behling, A. Regression Estimators for Aboveground Biomass and Its Constituent Parts of Trees in Native Southern Brazilian Forests. Ecol. Indic. 2021, 130, 108025. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E.; Yung, Y.-K. Evaluation of Atmospheric Correction Models and Landsat Surface Reflectance Product in an Urban Coastal Environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [Google Scholar] [CrossRef]
- Bueno, I.T.; Acerbi Junior, F.W.; Silveira, E.M.; Mello, J.M.; Carvalho, L.M.; Gomide, L.R.; Withey, K.; Scolforo, J.R.S. Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series. Remote Sens. 2019, 11, 570. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Dorren, L.K.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-Based Forest Mapping in Steep Mountainous Terrain Using Object-Based Classification. For. Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Labib, S.M.; Harris, A. The Potentials of Sentinel-2 and LandSat-8 Data in Green Infrastructure Extraction, Using Object Based Image Analysis (OBIA) Method. Eur. J. Remote Sens. 2018, 51, 231–240. [Google Scholar] [CrossRef]
- Silveira, E.M.; Silva, S.H.G.; Acerbi-Junior, F.W.; Carvalho, M.C.; Carvalho, L.M.T.; Scolforo, J.R.S.; Wulder, M.A. Object-Based Random Forest Modelling of Aboveground Forest Biomass Outperforms a Pixel-Based Approach in a Heterogeneous and Mountain Tropical Environment. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 175–188. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-05272-9. [Google Scholar]
- David, H.C.; Barbosa, R.I.; Vibrans, A.C.; Watzlawick, L.F.; Trautenmuller, J.W.; Balbinot, R.; Ribeiro, S.C.; Jacovine, L.A.G.; Corte, A.P.D.; Sanquetta, C.R.; et al. The Tropical Biomass & Carbon Project–An Application for Forest Biomass and Carbon Estimates. Ecol. Model. 2022, 472, 110067. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral Saturation in the Remote Sensing of High-Density Vegetation Traits: A Systematic Review of Progress, Challenges, and Prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R. The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of Spartina Alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Richardson, A.J.; Everitt, J.H. Using Spectral Vegetation Indices to Estimate Rangeland Productivity. Geocarto. Int. 1992, 7, 63–69. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of Sample Size, Data Type and Prediction Method for Remote Sensing-Based Estimations of Aboveground Forest Biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R. News 2002, 2, 18–22. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing [Internet]; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 81. [Google Scholar]
- Kott, P.S. Calibration Weighting: Combining Probability Samples and Linear Prediction Models. In Handbook of Statisticsi; Pfeffermann, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 29, pp. 55–82. [Google Scholar]
- Särndal, C.-E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- McRoberts, R.E.; Vibrans, A.C.; Sannier, C.; Næsset, E.; Hansen, M.C.; Walters, B.F.; Lingner, D.V. Methods for Evaluating the Utilities of Local and Global Maps for Increasing the Precision of Estimates of Subtropical Forest Area. Can. J. For. Res. 2016, 46, 924–932. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Walters, B.F. Statistical Inference for Remote Sensing-Based Estimates of Net Deforestation. Remote Sens. Environ. 2012, 124, 394–401. [Google Scholar] [CrossRef]
- Vibrans, A.C.; McRoberts, R.E.; Moser, P.; Nicoletti, A.L. Using Satellite Image-Based Maps and Ground Inventory Data to Estimate the Area of the Remaining Atlantic Forest in the Brazilian State of Santa Catarina. Remote Sens. Environ. 2013, 130, 87–95. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques; John Wiley and Sons: Hoboken, NJ, USA, 1977; Volume 448, p. 127. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Stehman, S.V. Estimating Area from an Accuracy Assessment Error Matrix. Remote Sens. Environ. 2013, 132, 202–211. [Google Scholar] [CrossRef]
- Palmer, M. Propagation of Uncertainty through Mathematical Operations. Available online: https://web.mit.edu/fluids-modules/www/exper_techniques/2.Propagation_of_Uncertaint.pdf (accessed on 2 February 2022).
- David, H.C.; Miranda, R.O.V.; Welker, J.; Fiorentin, L.D.; Ebling, Â.A.; da Silva, P.H.B.M. Strategies for Stem Measurement Sampling: A Statistical Approach of Modelling Individual Tree Volume. Cerne 2016, 22, 249–260. [Google Scholar] [CrossRef]
- Widagdo, F.R.A.; Li, F.; Zhang, L.; Dong, L. Aggregated Biomass Model Systems and Carbon Concentration Variations for Tree Carbon Quantification of Natural Mongolian Oak in Northeast China. Forests 2020, 11, 397. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J. Mapping Tropical Forest Carbon: Calibrating Plot Estimates to a Simple LiDAR Metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Deo, R.K.; Russell, M.B.; Domke, G.M.; Woodall, C.W.; Falkowski, M.J.; Cohen, W.B. Using Landsat Time-Series and LiDAR to Inform Aboveground Forest Biomass Baselines in Northern Minnesota, USA. Can. J. Remote Sens. 2017, 43, 28–47. [Google Scholar] [CrossRef]
- Ene, L.T.; Næsset, E.; Gobakken, T.; Bollandsås, O.M.; Mauya, E.W.; Zahabu, E. Large-Scale Estimation of Change in Aboveground Biomass in Miombo Woodlands Using Airborne Laser Scanning and National Forest Inventory Data. Remote Sens. Environ. 2017, 188, 106–117. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E.; Nelson, R.; Bollandsås, O.M.; Gregoire, T.G.; Ståhl, G.; Holm, S.; Ørka, H.O.; Astrup, R. Estimating Biomass in Hedmark County, Norway Using National Forest Inventory Field Plots and Airborne Laser Scanning. Remote Sens. Environ. 2012, 123, 443–456. [Google Scholar] [CrossRef]
- Mitchard, E.T.; Saatchi, S.S.; White, L.J.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H. Mapping Tropical Forest Biomass with Radar and Spaceborne LiDAR in Lopé National Park, Gabon: Overcoming Problems of High Biomass and Persistent Cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef]
- Næsset, E.; Ørka, H.O.; Solberg, S.; Bollandsås, O.M.; Hansen, E.H.; Mauya, E.; Zahabu, E.; Malimbwi, R.; Chamuya, N.; Olsson, H. Mapping and Estimating Forest Area and Aboveground Biomass in Miombo Woodlands in Tanzania Using Data from Airborne Laser Scanning, TanDEM-X, RapidEye, and Global Forest Maps: A Comparison of Estimated Precision. Remote Sens. Environ. 2016, 175, 282–300. [Google Scholar] [CrossRef]
Tree Variable | Minimum | Medium | Maximum | CV (%) |
---|---|---|---|---|
Diameter at breast height (cm) | 10.0 | 18.4 | 118.3 | 52.0% |
Total height (m) | 1.4 | 10.4 | 28.0 | 34.9% |
Number of trees ha−1 (dbh ≥ 10 cm) | 3 | 237 | 1,208 | 91.4% |
Aboveground biomass * (kg tree−1) | 3.7 | 151.9 | 6,476.0 | 184.7% |
r = Columns: Reference | Non-Forest | Forest | User’s Accuracy | ||
---|---|---|---|---|---|
c = rows: classification | Non-forest | ||||
Forest | |||||
Producer’s accuracy |
Vegetation Index | Formulation | Reference |
---|---|---|
DVI | [35] | |
EVI | [36] | |
NDMI | [37] | |
NDVI | [38] | |
PVI | [39] | |
SAVI | [40] | |
SR | [41] | |
TVI | [42] |
j = Columns: Reference | Non-Forest | Forest | User’s Accuracy | |||
---|---|---|---|---|---|---|
Grand stratum * ‘Mid-west’ | ||||||
i = rows: classification | Non-forest | 0.85 | 0.01 | 0.86 | 0.99 | 0.867 |
Forest | 0.03 | 0.11 | 0.14 | 0.78 | 0.133 | |
Total | 0.88 | 0.12 | 1 | 1.000 | ||
Producer’s accuracy | 0.96 | 0.94 | ||||
Grand stratum * ‘Mid-south’ | ||||||
i = rows: classification | Non-forest | 0.59 | 0.01 | 0.60 | 0.98 | 0.689 |
Forest | 0.10 | 0.30 | 0.40 | 0.75 | 0.311 | |
Total | 0.69 | 0.31 | 1 | 1.000 | ||
Producer’s accuracy | 0.86 | 0.97 | ||||
Grand stratum * ‘Southeast’ | ||||||
i = rows: classification | Non-forest | 0.39 | 0.06 | 0.45 | 0.87 | 0.466 |
Forest | 0.05 | 0.50 | 0.55 | 0.91 | 0.534 | |
Total | 0.44 | 0.56 | 1 | 1.000 | ||
Producer’s accuracy | 0.89 | 0.89 |
Class of Mean AGB | Standard Error of AGB (Mg ha−1) |
---|---|
85–94.9 Mg ha−1 | 20.23 |
95–114.9 Mg ha−1 | 23.03 |
105–114.9 Mg ha−1 | 27.62 |
115–124.9 Mg ha−1 | 20.56 |
125–134.9 Mg ha−1 | 21.48 |
135–144.9 Mg ha−1 | 23.78 |
145–154.9 Mg ha−1 | 22.74 |
155–165.0 Mg ha−1 | 19.69 |
Ranking of Counties by AGB Stock | (ha) | Confidence Interval (95%) | |||
---|---|---|---|---|---|
Lower Limit | Total | Upper Limit | |||
1st-Prudentópolis | 89,818 | 0.414 | 6,559,415 | 9,841,894 | 13,644,139 |
2nd-Guarapuava | 109,535 | 0.257 | 5,433,926 | 8,548,769 | 12,286,599 |
3rd-Cruz Machado | 82,189 | 0.570 | 5,830,320 | 8,220,944 | 10,897,854 |
4th-São Mateus do Sul | 57,061 | 0.438 | 5,845,709 | 7,857,820 | 10,138,573 |
5 th-Bituruna | 77,361 | 0.651 | 5,537,339 | 7,728,680 | 10,155,447 |
6th-General Carneiro | 77,424 | 0.739 | 5,467,624 | 7,385,800 | 9,486,184 |
7th-Coronel Domingos Soares | 77,099 | 0.409 | 4,572,440 | 6,753,636 | 9,240,165 |
8th-Pinhão | 77,406 | 0.300 | 4,182,012 | 6,117,693 | 8,380,487 |
9th-Teixeira Soares | 32,879 | 0.376 | 3,867,473 | 5,124,560 | 6,554,368 |
10th-São João do Triunfo | 33,305 | 0.475 | 3,949,145 | 5,107,761 | 6,404,205 |
Study area | = | = 0.357 | 152,007,465 | 218,128,166 | 291,927,114 |
1,762,569 |
Origin of the Estimator | Grand Stratum a | c | |||
---|---|---|---|---|---|
Regression estimator | Mid-west | 0.093 | 0.147 | 0.025 | 0.012 |
Mid-south | 0.463 | 0.342 | 0.091 | 0.018 | |
Southeast | 0.443 | 0.511 | −0.008 | 0.022 | |
(Large area) | (1.00) | 0.399 b | 0.041 | 0.013 | |
SRSP estimator | Mid-west | 0.093 | 0.187 | - | 0.010 |
Mid-south | 0.463 | 0.279 | - | 0.013 | |
Southeast | 0.443 | 0.436 | - | 0.021 | |
(Large area) | (1.00) | 0.340 b | - | 0.011 | |
Synthetic estimator | Mid-west | 0.093 | 0.147 | - | 0.012 |
Mid-south | 0.463 | 0.342 | - | 0.018 | |
Southeast | 0.443 | 0.511 | - | 0.022 | |
(Large area) | (1.00) | 0.399 b | - | 0.013 | |
Ratio estimator | Mid-west | 0.222 | 0.099 | - | 0.031 |
Mid-south | 0.474 | 0.399 | - | 0.045 | |
Southeast | 0.303 | 0.483 | - | 0.054 | |
(Large area) | (1.00) | 0.358 b | - | 0.028 |
Origin of the Estimator | Confidence Interval (95%) | Range | |
---|---|---|---|
Lower Limit | Upper Limit | ||
Adding forest-mapping-related uncertainty (A) | |||
Regression estimator | 152,007,465 | 291,927,114 | 139,919,649 |
SRSP estimator | 146,227,162 | 277,613,198 | 131,386,036 |
Synthetic estimator | 170,618,677 | 322,975,900 | 152,357,223 |
Ratio estimator | 138,387,641 | 315,158,106 | 176,770,465 |
Without adding forest-mapping-related uncertainty (B) | |||
- | 182,108,175 | 303,808,153 | 121,699,978 |
Difference a between (A) and (B) | |||
Regression estimator | −19.8% | −4.1% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, H.C.; Vibrans, A.C.; Martins-Neto, R.P.; Dalla Corte, A.P.; Péllico Netto, S. Incorporating Forest Mapping-Related Uncertainty into the Error Propagation of Wall-to-Wall Biomass Maps: A General Approach for Large and Small Areas. Remote Sens. 2024, 16, 4295. https://doi.org/10.3390/rs16224295
David HC, Vibrans AC, Martins-Neto RP, Dalla Corte AP, Péllico Netto S. Incorporating Forest Mapping-Related Uncertainty into the Error Propagation of Wall-to-Wall Biomass Maps: A General Approach for Large and Small Areas. Remote Sensing. 2024; 16(22):4295. https://doi.org/10.3390/rs16224295
Chicago/Turabian StyleDavid, Hassan C., Alexander C. Vibrans, Rorai P. Martins-Neto, Ana Paula Dalla Corte, and Sylvio Péllico Netto. 2024. "Incorporating Forest Mapping-Related Uncertainty into the Error Propagation of Wall-to-Wall Biomass Maps: A General Approach for Large and Small Areas" Remote Sensing 16, no. 22: 4295. https://doi.org/10.3390/rs16224295
APA StyleDavid, H. C., Vibrans, A. C., Martins-Neto, R. P., Dalla Corte, A. P., & Péllico Netto, S. (2024). Incorporating Forest Mapping-Related Uncertainty into the Error Propagation of Wall-to-Wall Biomass Maps: A General Approach for Large and Small Areas. Remote Sensing, 16(22), 4295. https://doi.org/10.3390/rs16224295