Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and Two-Parameter Stratified Model Using Proximal Remote Sensing and Phenological Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Data Acquisition
2.2.1. Field Canopy Hyperspectral Reflectance Measurements
2.2.2. UAV Hyperspectral Image Acquisition
2.2.3. Field Experiment Data Acquisition
2.2.4. Meteorological Data Collection and Calculation of Thermal Metric-Related Phenological Variables
2.2.5. Spectral Vegetation Indices
2.3. Cross-Validation for the Selection of the Optimal Vegetation Index
2.4. Estimation Model of Winter Wheat Stem Dry Biomass (Tc/Tp-SDB)
2.5. Model Evaluation
3. Results
3.1. Dry Biomass Statistics and Their Relationship with VIs
3.1.1. Dry Biomass Statistics
3.1.2. Relationship Between Different Types of VIs and PV and Dry Biomass
3.1.3. Relationship Between LDB and SDB Changes with Phenology
3.2. Results of Leaf Dry Biomass Estimation
3.3. Stem Dry Biomass Estimations with the Tc/Tp-SDB Model
3.3.1. Estimated SDB with Different PVs
3.3.2. Validation of the Tc/Tp-SDB Model Based on the Optimal PV
3.3.3. Validation of the Tc/Tp-SDB Model with UAV Hyperspectral Images
4. Discussion
4.1. Effect of LDB Estimation Accuracy on Tc/Tp-SDB Model Performance
4.2. Effect of Phenological Variables and VIs on Estimated SDB
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fei, S.; Xu, D.; Chen, Z.; Xiao, Y.; Ma, Y. MLR-Based Feature Splitting Regression for Estimating Plant Traits Using High-Dimensional Hyperspectral Reflectance Data. Field Crops Res. 2023, 293, 108855. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Braun, H.-J. Wheat Improvement. In Wheat Improvement; Reynolds, M.P., Braun, H.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–15. ISBN 978-3-030-90672-6. [Google Scholar]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Gupta, M.L.; Pradhan, K. Chemical and Biological Evaluation of Ensiled Wheat Straw. J. Dairy Sci. 1977, 60, 1088–1094. [Google Scholar] [CrossRef]
- Liu, J.; Fang, L.; Qiu, T.; Chen, J.; Wang, H.; Liu, M.; Yi, J.; Zhang, H.; Wang, C.; Sardans, J.; et al. Crop Residue Return Achieves Environmental Mitigation and Enhances Grain Yield: A Global Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 78. [Google Scholar] [CrossRef]
- Chang, Z.; Fan, L.; Wigneron, J.-P.; Wang, Y.-P.; Ciais, P.; Chave, J.; Fensholt, R.; Chen, J.M.; Yuan, W.; Ju, W.; et al. Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019. J. Remote Sens. 2023, 3, 0005. [Google Scholar] [CrossRef]
- Wocher, M.; Berger, K.; Verrelst, J.; Hank, T. Retrieval of Carbon Content and Biomass from Hyperspectral Imagery over Cultivated Areas. ISPRS J. Photogramm. Remote Sens. 2022, 193, 104–114. [Google Scholar] [CrossRef]
- Shu, M.; Shen, M.; Dong, Q.; Yang, X.; Li, B.; Ma, Y. Estimating the Maize Above-Ground Biomass by Constructing the Tridimensional Concept Model Based on UAV-Based Digital and Multi-Spectral Images. Field Crops Res. 2022, 282, 108491. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Tao, X.; Su, X.; Li, W.; Zha, H.; Wu, W.; Li, X. A Three-Dimensional Conceptual Model for Estimating the Above-Ground Biomass of Winter Wheat Using Digital and Multispectral Unmanned Aerial Vehicle Images at Various Growth Stages. Remote Sens. 2023, 15, 3332. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of Biomass in Wheat Using Random Forest Regression Algorithm and Remote Sensing Data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Sun, Z.; Li, J.; Jin, X.; Zhu, W.; Bian, J.; Ma, L.; Zeng, Y.; Su, Z. Deep Convolutional Neural Networks for Estimating Maize Above-Ground Biomass Using Multi-Source UAV Images: A Comparison with Traditional Machine Learning Algorithms. Precis. Agric. 2023, 24, 92–113. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Jin, X.; Fan, Y.; Chen, R.; Bian, M.; Ma, Y.; Song, X.; Yang, G. Improved Potato AGB Estimates Based on UAV RGB and Hyperspectral Images. Comput. Electron. Agric. 2023, 214, 108260. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Bian, M.; Ma, Y.; Jin, X.; Song, X.; Yang, G. Estimating Potato Above-Ground Biomass by Using Integrated Unmanned Aerial System-Based Optical, Structural, and Textural Canopy Measurements. Comput. Electron. Agric. 2023, 213, 108229. [Google Scholar] [CrossRef]
- Teng, W.; Yu, Q.; Mischenko, I.C.; Rice, A.M.; Richardson, J.B. Predicting Foliar Nutrient Concentrations across Geologic Materials and Tree Genera in the Northeastern United States Using Spectral Reflectance and Partial Least Squares Regression Models. J. Remote Sens. 2024, 4, 0093. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, W.; Shao, J.; Wan, P.; Cheng, S.; Cai, S.; Yan, G.; Li, A. Estimation of Larch Growth at the Stem, Crown, and Branch Levels Using Ground-Based LiDAR Point Cloud. J. Remote Sens. 2022, 2022, 9836979. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, C.; Yang, H.; Yang, G.; Han, L.; Li, Z.; Feng, H.; Xu, B.; Wu, J.; Lei, L. Estimation of Maize Above-Ground Biomass Based on Stem-Leaf Separation Strategy Integrated with LiDAR and Optical Remote Sensing Data. PeerJ 2019, 7, e7593. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Sheng, Q.; Li, J.; Zhao, H.; Wang, S.; Liu, X.; He, H. Dual-Polarization SAR Rice Growth Model: A Modeling Approach for Monitoring Plant Height by Combining Crop Growth Patterns with Spatiotemporal SAR Data. Comput. Electron. Agric. 2023, 215, 108358. [Google Scholar] [CrossRef]
- Yang, H.; Yang, G.; Gaulton, R.; Zhao, C.; Li, Z.; Taylor, J.; Wicks, D.; Minchella, A.; Chen, E.; Yang, X. In-Season Biomass Estimation of Oilseed Rape (Brassica napus L.) Using Fully Polarimetric SAR Imagery. Precis. Agric. 2019, 20, 630–648. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, L.; Zhang, B.; Qu, X.; Cui, Y.; Shu, M.; Gu, X. Evaluation of Growth Recovery Grade in Lodging Maize via UAV-Based Hyperspectral Images. J. Remote Sens. 2024, 4, 0253. [Google Scholar] [CrossRef]
- Fei, S.; Xiao, S.; Li, Q.; Shu, M.; Zhai, W.; Xiao, Y.; Chen, Z.; Yu, H.; Ma, Y. Enhancing Leaf Area Index and Biomass Estimation in Maize with Feature Augmentation from Unmanned Aerial Vehicle-Based Nadir and Cross-Circling Oblique Photography. Comput. Electron. Agric. 2023, 215, 108462. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Liu, Q.; Huang, W.; Wang, J. Inversion of a Radiative Transfer Model for Estimating Forest LAI From Multisource and Multiangular Optical Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 988–1000. [Google Scholar] [CrossRef]
- Zhao, C.; Li, H.; Li, P.; Yang, G.; Gu, X.; Lan, Y. Effect of Vertical Distribution of Crop Structure and Biochemical Parameters of Winter Wheat on Canopy Reflectance Characteristics and Spectral Indices. IEEE Trans. Geosci. Remote Sens. 2017, 55, 236–247. [Google Scholar] [CrossRef]
- Wang, L.; Hunt, E.R.; Qu, J.J.; Hao, X.; Daughtry, C.S.T. Towards Estimation of Canopy Foliar Biomass with Spectral Reflectance Measurements. Remote Sens. Environ. 2011, 115, 836–840. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, Y.; Han, S.; Feng, H.; Yang, G.; Li, Z. Should Phenological Information Be Applied to Predict Agronomic Traits across Growth Stages of Winter Wheat? Crop J. 2022, 10, 1346–1352. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Yang, G.; Fu, Y.; Wang, H.; Zhou, C. Estimating Vertically Growing Crop Above-Ground Biomass Based on UAV Remote Sensing. Comput. Electron. Agric. 2023, 205, 107627. [Google Scholar] [CrossRef]
- Cheng, T.; Song, R.; Li, D.; Zhou, K.; Zheng, H.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Spectroscopic Estimation of Biomass in Canopy Components of Paddy Rice Using Dry Matter and Chlorophyll Indices. Remote Sens. 2017, 9, 319. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, H.; Yang, G.; Yu, F.; Zhang, C.; Chen, R.; Tang, A.; Zhang, W.; Yang, C.; Xu, T. Estimation of Maize Biomass at Multi-Growing Stage Using Stem and Leaf Separation Strategies with 3D Radiative Transfer Model and CNN Transfer Learning. Remote Sens. 2024, 16, 3000. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, C.; Zhou, J.; Li, Y.; Gao, G.; Fu, B. Logistic Model Outperforms Allometric Regression to Estimate Biomass of Xerophytic Shrubs. Ecol. Indic. 2021, 132, 108278. [Google Scholar] [CrossRef]
- Yang, Q.; Su, Y.; Hu, T.; Jin, S.; Liu, X.; Niu, C.; Liu, Z.; Kelly, M.; Wei, J.; Guo, Q. Allometry-Based Estimation of Forest Aboveground Biomass Combining LiDAR Canopy Height Attributes and Optical Spectral Indexes. For. Ecosyst. 2022, 9, 100059. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Yue, J.; Jin, X.; Ma, Y.; Chen, R.; Bian, M.; Yang, G.; Feng, H. A Model Suitable for Estimating Above-Ground Biomass of Potatoes at Different Regional Levels. Comput. Electron. Agric. 2024, 222, 109081. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Jin, X.; Fan, Y.; Chen, R.; Bian, M.; Ma, Y.; Li, J.; Xu, B.; et al. Improving Potato AGB Estimation to Mitigate Phenological Stage Impacts through Depth Features from Hyperspectral Data. Comput. Electron. Agric. 2024, 219, 108808. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Y.; Cheng, J.; Zhao, F.; Yang, H.; Feng, H.; Li, Z.; Ma, X.; Zhao, C.; Yang, G. Monitoring Key Wheat Growth Variables by Integrating Phenology and UAV Multispectral Imagery Data into Random Forest Model. Remote Sens. 2022, 14, 3723. [Google Scholar] [CrossRef]
- Mcmaster, G. Growing Degree-Days: One Equation, Two Interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Curtis, B.C.; Rajaram, S.; Gómez Macpherson, H.; FAO (Eds.) Bread Wheat: Improvement and Production; FAO Plant Production and Protection Series; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; ISBN 978-92-5-104809-2. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In 3rd Earth Resource Technology Satellite (ERTS) Symposium; Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1974; Volume 1, pp. 48–62. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Féret, J.-B.; François, C.; Gitelson, A.; Asner, G.P.; Barry, K.M.; Panigada, C.; Richardson, A.D.; Jacquemoud, S. Optimizing Spectral Indices and Chemometric Analysis of Leaf Chemical Properties Using Radiative Transfer Modeling. Remote Sens. Environ. 2011, 115, 2742–2750. [Google Scholar] [CrossRef]
- Serrano, L.; Penuelas, J.; Ustin, S.L. Remote Sensing of Nitrogen and Lignin in Mediterranean Vegetation from AVIRIS Data: Decomposing Biochemical from Structural Signals. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Lemaire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.; Breda, N.; Genet, H.; Davi, H.; Dufrene, E. Calibration and Validation of Hyperspectral Indices for the Estimation of Broadleaved Forest Leaf Chlorophyll Content, Leaf Mass per Area, Leaf Area Index and Leaf Canopy Biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Martín-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández-Suárez, C.M.; Montesinos-López, A.; Juliana, P.; Singh, R. A Benchmarking Between Deep Learning, Support Vector Machine and Bayesian Threshold Best Linear Unbiased Prediction for Predicting Ordinal Traits in Plant Breeding. G3 Genes|Genomes|Genet. 2019, 9, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, Y.; Taylor, J.; Gaulton, R.; Jin, X.; Song, X.; Li, Z.; Meng, Y.; Chen, P.; Feng, H.; et al. Comparison and Transferability of Thermal, Temporal and Phenological-Based in-Season Predictions of above-Ground Biomass in Wheat Crops from Proximal Crop Reflectance Data. Remote Sens. Environ. 2022, 273, 112967. [Google Scholar] [CrossRef]
- Li, Z.; Taylor, J.; Yang, H.; Casa, R.; Jin, X.; Li, Z.; Song, X.; Yang, G. A Hierarchical Interannual Wheat Yield and Grain Protein Prediction Model Using Spectral Vegetative Indices and Meteorological Data. Field Crops Res. 2020, 248, 107711. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, D.; Chen, X.; Zhou, Q.; Peng, Y.; Li, J.; Sang, Y. CCHZ-DISO: A Timely New Assessment System for Data Quality or Model Performance From Da Dao Zhi Jian. Geophys. Res. Lett. 2022, 49, e2022GL100681. [Google Scholar] [CrossRef]
- Feng, Z.; Cheng, Z.; Ren, L.; Liu, B.; Zhang, C.; Zhao, D.; Sun, H.; Feng, H.; Long, H.; Xu, B.; et al. Real-Time Monitoring of Maize Phenology with the VI-RGS Composite Index Using Time-Series UAV Remote Sensing Images and Meteorological Data. Comput. Electron. Agric. 2024, 224, 109212. [Google Scholar] [CrossRef]
- Zeng, N.; Ren, X.; He, H.; Zhang, L.; Zhao, D.; Ge, R.; Li, P.; Niu, Z. Estimating Grassland Aboveground Biomass on the Tibetan Plateau Using a Random Forest Algorithm. Ecol. Indic. 2019, 102, 479–487. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Li, X.; Zhuo, W.; Wu, Y.; Niu, Q.; Su, W.; Yuan, W. A Dataset of Winter Wheat Aboveground Biomass in China during 2007–2015 Based on Data Assimilation. Sci Data 2022, 9, 200. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Wang, W.; Zheng, H.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Chen, Q.; Cheng, T. Estimating Aboveground and Organ Biomass of Plant Canopies across the Entire Season of Rice Growth with Terrestrial Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102132. [Google Scholar] [CrossRef]
- Jungers, J.M.; Frahm, C.S.; Tautges, N.E.; Ehlke, N.J.; Wells, M.S.; Wyse, D.L.; Sheaffer, C.C. Growth, Development, and Biomass Partitioning of the Perennial Grain Crop Thinopyrum Intermedium: Growth, Development, and Biomass Partitioning of a Perennial Grain Crop. Ann. Appl. Biol. 2018, 172, 346–354. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Hu, Z.; Xiao, W. Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data. Agriculture 2023, 13, 1621. [Google Scholar] [CrossRef]
- Qiao, K. New Three Red-Edge Vegetation Index (VI3RE) for Crop Seasonal LAI Prediction Using Sentinel-2 Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103894. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Zhang, Z. Improving Leaf Area Index Estimation With Chlorophyll Insensitive Multispectral Red-Edge Vegetation Indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3568–3582. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sens. 2020, 12, 1274. [Google Scholar] [CrossRef]
- Li, C.; Chen, W.; Wang, Y.; Wang, Y.; Ma, C.; Li, Y.; Li, J.; Zhai, W. Mapping Winter Wheat with Optical and SAR Images Based on Google Earth Engine in Henan Province, China. Remote Sens. 2022, 14, 284. [Google Scholar] [CrossRef]
- He, J.; Zhang, N.; Su, X.; Lu, J.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Estimating Leaf Area Index with a New Vegetation Index Considering the Influence of Rice Panicles. Remote Sens. 2019, 11, 1809. [Google Scholar] [CrossRef]
- Li, D.; Yu, W.; Zheng, H.; Guo, C.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. Towards Practical Semi-Empirical Models for the Estimation of Leaf and Canopy Water Contents from Hyperspectral Reflectance. Comput. Electron. Agric. 2023, 214, 108309. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral Saturation in the Remote Sensing of High-Density Vegetation Traits: A Systematic Review of Progress, Challenges, and Prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Jiang, H.; Chianucci, F.; Hu, R.; Song, W.; Qi, J.; Liu, S.; Zhou, J.; Chen, L.; et al. Review of Ground and Aerial Methods for Vegetation Cover Fraction (fCover) and Related Quantities Estimation: Definitions, Advances, Challenges, and Future Perspectives. ISPRS J. Photogramm. Remote Sens. 2023, 199, 133–156. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, S.; Parent, B.; Yin, X.; De Solan, B.; Jiang, D.; Ding, Y.; Baret, F. Genotype × Environment × Management Analysis to Define Allometric Rules between Leaves and Stems in Wheat. J. Exp. Bot. 2024, 75, 6388–6404. [Google Scholar] [CrossRef]
Cultivar | Plots | Nitrogen Rate (kg/ha) | Irrigation Rate (mm) | Sampling Data | |
---|---|---|---|---|---|
Exp. 1 (2013–2014) | Zhongmai175 Jing9843 | 16 | N0 (0) N1 (90) N2 (180) N3 (270) | I0 (rainfall) I1 (192) I2 (384) | 4.11; 4.21; 5.07; 5.20 |
Exp. 2 (2014–2015) | Zhongmai175 Jing9843 | 16 | N0 (0) N1 (90) N2 (180) N3 (270) | I0 (rainfall) I1 (192) I2 (384) | 4.14; 4.27; 5.12; 5.26 |
Exp. 3 (2019–2020) | Jingdong22 | 32 | N0 (18) N1 (90) N2 (180) N3 (270) | Rainfall | 4.17; 4.28; 5.15; 6.01 |
Exp. 4 (2021–2022) | Jinghua11 Zhongmai1062 | 32 | N0 (18) N1 (90) N2 (180) N3 (270) | Rainfall | 4.18; 4.29; 5.10; 5.30 |
VI Type | VI | Formula | Reference |
---|---|---|---|
Chlorophyll indices | Normalized Difference Vegetation Index | [39] | |
Red-edge Chlorophyll Index | [40] | ||
Simple Ratio 705 | [41] | ||
Dry matter indices | Normalized Difference index for the Leaf Mass per Area | [42] | |
Normalized Difference Lignin Index | [43] | ||
Normalized Difference Index for leaf canopy biomass | [44] |
Dry Biomass | Sensitivity Index | ||
---|---|---|---|
CIred edge | EAT | Interaction | |
LDB | 0.9810 | 0.0148 | 0.0042 |
SDB | 0.1970 | 0.7066 | 0.0964 |
Dataset | Indices (t/ha) | Growth Stages | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Calibration | RMSE | 0.32 | 0.25 | 0.31 | 0.20 |
MAE | 0.25 | 0.19 | 0.25 | 0.17 | |
Validation | RMSE | 0.39 | 0.59 | 0.31 | 0.33 |
MAE | 0.29 | 0.44 | 0.23 | 0.25 | |
All datasets | RMSE | 0.36 | 0.46 | 0.31 | 0.27 |
MAE | 0.27 | 0.31 | 0.24 | 0.21 |
Phenological Variables | Coefficient | Model | r |
---|---|---|---|
GDD | β0 | β0 = 0.004GDD − 0.64 | 0.96 ** |
β1 | β1 = 0.001GDD + 0.91 | 0.34 ** | |
EAT | β0 | β0 = 0.005EAT − 2.94 | 0.95 ** |
β1 | β1 = 0.001EAT + 0.51 | 0.37 ** | |
DOY | β0 | β0 = 0.08DOY − 7.86 | 0.89 ** |
β1 | β1 = 0.02DOY − 1.17 | 0.54 ** | |
DAS | β0 | β0 = 0.07DAS − 13.69 | 0.84 ** |
β1 | β1 = 0.02DAS − 3.16 | 0.59 ** |
Dataset | Indices (t/ha) | Growth Stages | |||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||
Calibration | RMSE | 0.61 | 0.74 | 0.79 | 1.07 |
MAE | 0.53 | 0.63 | 0.60 | 0.81 | |
Validation | RMSE | 0.48 | 1.55 | 1.17 | 1.61 |
MAE | 0.40 | 1.21 | 0.89 | 1.37 | |
All datasets | RMSE | 0.55 | 1.21 | 1.00 | 1.36 |
MAE | 0.46 | 0.92 | 0.74 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Yang, G.; Meng, Y.; Feng, H.; Li, H.; Tang, A.; Zhang, J.; Xu, X.; Yang, H.; Li, C.; et al. Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and Two-Parameter Stratified Model Using Proximal Remote Sensing and Phenological Variables. Remote Sens. 2024, 16, 4300. https://doi.org/10.3390/rs16224300
Chen W, Yang G, Meng Y, Feng H, Li H, Tang A, Zhang J, Xu X, Yang H, Li C, et al. Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and Two-Parameter Stratified Model Using Proximal Remote Sensing and Phenological Variables. Remote Sensing. 2024; 16(22):4300. https://doi.org/10.3390/rs16224300
Chicago/Turabian StyleChen, Weinan, Guijun Yang, Yang Meng, Haikuan Feng, Heli Li, Aohua Tang, Jing Zhang, Xingang Xu, Hao Yang, Changchun Li, and et al. 2024. "Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and Two-Parameter Stratified Model Using Proximal Remote Sensing and Phenological Variables" Remote Sensing 16, no. 22: 4300. https://doi.org/10.3390/rs16224300
APA StyleChen, W., Yang, G., Meng, Y., Feng, H., Li, H., Tang, A., Zhang, J., Xu, X., Yang, H., Li, C., & Li, Z. (2024). Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and Two-Parameter Stratified Model Using Proximal Remote Sensing and Phenological Variables. Remote Sensing, 16(22), 4300. https://doi.org/10.3390/rs16224300