Comparison of the Distribution of Evapotranspiration on Shady and Sunny Slopes in Southwest China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Research Area
2.2. Data Source
3. Materials and Methods
3.1. Accuracy Evaluation Indicators
3.2. Correlation Analysis
4. Results
4.1. Validation of Evapotranspiration Estimation
4.2. Spatiotemporal Variation of ET in Southwest China
4.3. Variation Trend of ET at Different Elevations
4.4. Variation Trend of ET at Different Slopes
5. Discussion
5.1. Differentiation Effect of Slope Aspect on Related Elements
5.2. Analyses of ET and Its Influencing Factors on Shaded and Sunny Slopes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Sarukkalige, R. A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonzalez-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, M.; Yang, H.; Duan, A.; He, B.; Yang, S.; Wu, G. Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl. Sci. Rev. 2020, 7, 534–552. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Walker, D. The plant geography of Yunnan Province, southwest China. J. Biogeogr. 1986, 13, 367–397. [Google Scholar]
- Lin, W.; Wen, C.; Wen, Z.; Gang, H. Drought in Southwest China: A review. Atmos. Ocean. Sci. Lett. 2015, 8, 339–344. [Google Scholar]
- Zhao, J.; Xu, T.; Xiao, J.; Liu, S.; Mao, K.; Song, L.; Yao, Y.; He, X.; Feng, H. Responses of water use efficiency to drought in southwest China. Remote Sens. 2020, 12, 199. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, P.; Li, A. A Review of Evapotranspiration Estimation Using Remotely Sensed Data in Mountainous Region. Mt. Res. 2017, 35, 908–918. [Google Scholar] [CrossRef]
- Barnard, D.M.; Barnard, H.; Molotch, N. Topoclimate effects on growing season length and montane conifer growth in complex terrain. Environ. Res. Lett. 2017, 12, 064003. [Google Scholar] [CrossRef]
- Goulden, M.; Anderson, R.; Bales, R.; Kelly, A.; Meadows, M.; Winston, G. Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J. Geophys. Res. Biogeosci. 2012, 117, G03028. [Google Scholar] [CrossRef]
- Liu, W.; Yang, L.; Zhu, M.; Adamowski, J.F.; Barzegar, R.; Wen, X.; Yin, Z. Effect of elevation on variation in reference evapotranspiration under climate change in Northwest China. Sustainability 2021, 13, 10151. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, G.; Sun, X.; Zhu, M.; Song, C.; Huang, K.; Chen, X. Spatial-temporal patterns of evapotranspiration along an elevation gradient on Mount Gongga, Southwest China. Water Resour. Res. 2018, 54, 4180–4192. [Google Scholar] [CrossRef]
- Yin, G.; Xie, J.; Ma, D.; Xie, Q.; Verger, A.; Descals, A.; Filella, I.; Penuelas, J. Aspect Matters: Unraveling Microclimate Impacts on Mountain Greenness and Greening. Geophys. Res. Lett. 2023, 50, e2023GL105879. [Google Scholar] [CrossRef]
- Singh, S. Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in Montane ecosystems. Trop. Ecol. 2018, 59, 417–430. [Google Scholar]
- Fekedulegn, D.; Hicks, R.R., Jr.; Colbert, J. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. For. Ecol. Manag. 2003, 177, 409–425. [Google Scholar] [CrossRef]
- Kumari, N.; Saco, P.M.; Rodriguez, J.F.; Johnstone, S.A.; Srivastava, A.; Chun, K.P.; Yetemen, O. The grass is not always greener on the other side: Seasonal reversal of vegetation greenness in aspect-driven semiarid ecosystems. Geophys. Res. Lett. 2020, 47, e2020GL088918. [Google Scholar] [CrossRef]
- Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 2008, 216, 47–59. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Wang, S.; Liang, T.; Gao, Z.; Dong, Y. Changes in Soil Hydrological Retention Properties and Controlling Factors on Shaded and Sunny Slopes in Semi-Arid Alpine Woodlands. Forests 2024, 15, 1136. [Google Scholar] [CrossRef]
- Guan, Y.; Peng, J. Study on microclimate characteristics and energy benefit of afforestation preparation in West Mountain slope of Beijing. J. Beijing For. Univ. 1992, s5, 70–82. [Google Scholar]
- Chen, L.; Zhang, F.; Si, J.; Feng, Q.; Wei, Y. Spatially differentiated characteristics of vegetation carbon sequestration function in Helan Mountain area and its driving factors. Acta Ecol. Sin. 2023, 43, 10250–10262. [Google Scholar] [CrossRef]
- Mokhtar, A.; He, H.; Alsafadi, K.; Li, Y.; Zhao, H.; Keo, S.; Bai, C.; Abuarab, M.; Zhang, C.; Elbagoury, K. Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China. Environ. Earth Sci. 2020, 79, 312. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Zhou, Y.; Li, Z.; Hou, M.; Huang, H. Changes in reference evapotranspiration over Southwest China during 1960–2018: Attributions and implications for drought. Atmosphere 2019, 10, 705. [Google Scholar] [CrossRef]
- Liu, M.; Tang, R.; Li, Z.-L.; Yao, Y.; Yan, G. Global land surface evapotranspiration estimation from meteorological and satellite data using the support vector machine and semiempirical algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 513–521. [Google Scholar] [CrossRef]
- Guo, X.; Shi, J. Global review of the research progress and trend of evapotranspiration. Geol. Rev. 2019, 65, 1473–1486. [Google Scholar] [CrossRef]
- Zhang, C.; Long, D.; Cui, Y.; Cui, Y.; Bai, L.; Dong, L. Applications of remote sensing retrieval of evapotranspiration in irrigation water management: A review. J. Hydraul. Eng. 2023, 54, 1087–1098. [Google Scholar] [CrossRef]
- Liu, M.; Tang, R.; Li, Z.; Gao, M.; Yao, Y. Progress of data-driven remotely sensed retrieval methods and products on land surface evapotranspiration. Natl. Remote Sens. Bull. 2021, 25, 1517–1537. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Ge, S.; Guan, T.; Liu, Y.; Jin, J.; Wang, G.; Liu, C.; Ju, Q. Applicability evaluation and fusion on multi-source potential evapotranspiration products in the Yarlung Zangbo River basin. South-North Water Transf. Water Sci. Technol. 2024, 22, 491–501. [Google Scholar] [CrossRef]
- Cai, J.; Zhao, W.; Yang, M.; Zhan, Q.; Fu, H.; He, K. Spatiotemporal Changes of Evapotranspiration on the Qinghai-Tibet Plateau from 2001 to 2018 based on GLASS Data. Remote Sens. Technol. Appl. 2022, 37, 888–896. [Google Scholar]
- Lan, X. Influence of Mass Elevation Effect Factors on Latent and Sensible Heat Fluxes on the Tibetan Plateau. Master’s Thesis, Henan University, Kaifeng, China, 2023. [Google Scholar]
- Huang, X.; Wu, W.; Xu, J.; Li, S.; Jiang, Y.; Du, B.; Wang, L. The Applicability Performance of the ERA5-Land Precipitation Datasets in Southwest China. Plateau Meteorol. 2023, 42, 1562–1575. [Google Scholar]
- Zhang, M.; He, J.; Wang, B.; Wang, S.; Li, S.; Liu, W.; Ma, X. Extreme drought changes in Southwest China from 1960 to 2009. J. Geogr. Sci. 2013, 23, 3–16. [Google Scholar] [CrossRef]
- Dodson, J.; Shi, G.; Lu, F.; Yan, H. A 40,000 year record of vegetation, environment and climate change from Chongqing, Central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 573, 110441. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C.; Zhu, Y. Lake surface water temperature prediction and changing characteristics analysis-A case study of 11 natural lakes in Yunnan-Guizhou Plateau. J. Clean. Prod. 2020, 276, 122689. [Google Scholar] [CrossRef]
- Feng, L.; Maqunzong, G.; Guanglong, W.; Langzhuoga, S.; Budunzhu, P.; Weixiong, L. Thoughts on high-quality development of Xizang nature protected area system with national parks as main body. For. Constr. 2023, 41, 14–17. [Google Scholar]
- Wang, W.; Wang, W.; Li, J.; Wu, H.; Xu, C.; Liu, T. The impact of sustained drought on vegetation ecosystem in Southwest China based on remote sensing. Procedia Environ. Sci. 2010, 2, 1679–1691. [Google Scholar] [CrossRef]
- Guo, L.A.; Wu, Y.H.; Zheng, H.X.; Zhang, B.; Fan, L.X.; Chi, H.J.; Yan, B.K.; Wang, X.Q. Consistency and uncertainty of gridded terrestrial evapotranspiration estimations over China. J. Hydrol. 2022, 612, 128245. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Z.; Xie, Z.; Ma, W.; Wang, B.; Chen, X.; Li, M.; Zhong, L.; Sun, F.; Gu, L. A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data 2020, 12, 2937–2957. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Chen, J.; Ca, X.; Zhang, L.; Cheng, A.; Wang, S. A dataset of carbon and water fluxes in the sample plots of natural regeneration at Puding Station of Guizhou Province 2015–2019. China Sci. Data 2023, 8, 78–89. [Google Scholar] [CrossRef]
- Qi, D.; Yang, D.; Song, Q.; Liu, Y.; Zhang, Y.; Fei, X.; Sha, L.; Zhou, W.; Chen, A.; Wen, G. An observation dataset of carbon and water fluxes at Yuanjiang Dry-hot Valley Ecological Station (2013–2015). China Sci. Data 2021, 6, 110–122. [Google Scholar] [CrossRef]
- Qi, D.; Fei, X.; Song, Q.; Zhang, Y.; Sha, L.; Liu, Y.; Zhou, W.; Lu, Z.; Fan, Z. A dataset of carbon and water fluxes observation in subtropical evergreen broad-leaved forest in Ailao Shan from 2009 to 2013. China Sci. Data 2021, 6, 87–97. [Google Scholar] [CrossRef]
- Peng, P.; Zhu, L. Observations of land surface processes of the Tibetan Plateau based on the field stations network. Sci. Technol. Rev. 2017, 35, 97–102. [Google Scholar]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. For. Meteorol. 2013, 171, 187–202. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Zhao, T. A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci. Data 2023, 10, 139. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, M.; Zhan, W.; Zhao, Y.; Yang, Y.; Ge, E.; Ning, G.; Cong, J. HiMIC-Monthly: A 1 km high-resolution atmospheric moisture index collection over China, 2003–2020. Sci. Data 2024, 11, 425. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, J.; Ma, J.; Wang, Z.; Ding, L.; Zhang, X.; Zhang, X. TRIMS LST: A daily 1 km all-weather land surface temperature dataset for China’s landmass and surrounding areas (2000–2022). Earth Syst. Sci. Data 2024, 16, 387–419. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Göttsche, F.-M.; Zhan, W.; Liu, S.; Cao, R. A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhan, W.; Göttsche, F.-M.; Liu, S.; Olesen, F.-S.; Hu, W.; Dai, F. A thermal sampling depth correction method for land surface temperature estimation from satellite passive microwave observation over barren land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K. Merging satellite retrievals and reanalyses to produce global long-term and consistent surface incident solar radiation datasets. Remote Sens. 2018, 10, 115. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K. Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China. Earth Syst. Sci. Data 2021, 13, 907–922. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, K.; Liu, X.; Liu, C. Water storage in reservoirs built from 1997 to 2014 significantly altered the calculated evapotranspiration trends over China. J. Geophys. Res. Atmos. 2016, 121, 10097–10112. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, K. Comparison of evapotranspiration estimates based on the surface water balance, modified Penman-Monteith model, and reanalysis data sets for continental China. J. Geophys. Res. Atmos. 2017, 122, 3228–3244. [Google Scholar] [CrossRef]
- Gogtay, N.; Thatte, U. Principles of correlation analysis. J. Assoc. Physicians India 2017, 65, 78–81. [Google Scholar]
- Luo, X.; Yu, Q.; Ma, Q.; Guo, L. Study on the heat and deformation characteristics of an expressway embankment with shady and sunny slopes in warm and ice-rich permafrost regions. Transp. Geotech. 2020, 24, 100390. [Google Scholar] [CrossRef]
- Jin, H.; Sun, L.; Wang, S.; He, R.; Lv, L.; Yu, S. Dual Influences of Local Environmental Variables on Ground Temperatures on the Interior-Eastern Qinghai-Tibet Plateau(I): Vegetation and Snow Cover. J. Glaciol. Geocryol. 2008, 4, 535–545. [Google Scholar]
- Zhao, W.; Li, A.; Zhang, Z.; Bian, J.; Jin, H.; Yin, G.; Nan, X.; Lei, G. A Study on Land Surface Temperature Terrain Effect over Mountainous Area based on Landsat 8 Thermal Infrared Data. Remote Sens. Technol. Appl. 2016, 31, 63–73. [Google Scholar]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef]
- Lan, A.; Lin, Z.; Fan, X.; Yao, M. Differences of Surface Energy and Shallow Soil Temperature and Humidity at Sunny and Shady Slopes in Permafrost Region, Beiluhe Basin, Qinghai-Tibet Plateau. Adv. Earth Sci. 2021, 36, 962–979. [Google Scholar]
- Wang, Y.; Jing, J.; Liu, H. Spatio-temporal Variation of Evapotranspiration and Its Driving Factors in Southwest China from 2000 to 2020. Resour. Environ. Yangtze Basin 2023, 32, 2568–2580. [Google Scholar]
- Cai, Y.; Chen, L.; Lyv, S.; Zhang, Y.; Wu, Q.; Wang, F.; Song, J.; Cheng, L.; Liu, Q.; Zhang, J. Impact of vegetation change on evapotranspiration components in the Loess Plateau based on Google Earth Engine. Sci. Geogr. Sin. 2023, 43, 1649–1658. [Google Scholar] [CrossRef]
- Zhao, X. The Tibetan Plateau and vegetation in China: Characteristics of the geographical distribution of vegetation in China in relation to the effect of the plateau on atmospheric circulation. J. Xinjiang Agric. Univ. 1979, 1, 1–10. [Google Scholar]
- Wu, X.; Zhu, Y. Elevation calculation and variation of climatic snowline in China. Chin. Sci. Bull. 1990, 6, 451–453. [Google Scholar]
- Jiang, F.; Wu, X.; Wang, S.; Fu, J.; Wang, Y.; Zhao, Z. Features of space distribution of the forest line and relations between the forest line and climatic limit of permafrost and climatic snowline in China. J. Geomech. 2004, 4, 289–299. [Google Scholar]
- Liu, J. Study on the Influence of Mass Elevation Effect on Solar Radiation and Altitudinal Belt of Vegetation in the Oinling-Daba Mountains. Master’s Thesis, Henan University, Kaifeng, China, 2020. [Google Scholar]
- Che, Y.; Zhang, M.; Li, Z.; Wei, Y.; Nan, Z.; Li, H.; Wang, S.; Su, B. Energy balance model of mass balance and its sensitivity to meteorological variability on Urumqi River Glacier No. 1 in the Chinese Tien Shan. Sci. Rep. 2019, 9, 13958. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Liu, Q.; Liu, S.; Jia, K.; Zhang, X.; Xu, Z.; Xu, T.; Chen, J.; Fisher, J.B. Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China. Sci. Total Environ. 2019, 695, 133787. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Glob. Chang. Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Murphy, P.C.; Knowles, J.F.; Moore, D.J.; Anchukaitis, K.; Potts, D.L.; Barron-Gafford, G.A. Topography influences species-specific patterns of seasonal primary productivity in a semiarid montane forest. Tree Physiol. 2020, 40, 1343–1354. [Google Scholar] [CrossRef] [PubMed]
ID | Site Name | Lon E | Lat N | Duration | References | Data Source |
---|---|---|---|---|---|---|
1 | BJ | 91.9 | 31.37 | 2010–2016 | [38] | A Big Earth Data Platform for Three Poles, DOI: 10.11888/Meteoro.tpdc.270910. CSTR: 18406.11.Meteoro.tpdc.270910, accessed on 14 November 2024 |
2 | QOMS | 86.95 | 28.36 | 2010–2016 | ||
3 | SETORS | 94.73 | 29.77 | 2010–2016 | ||
4 | NADORS | 79.7 | 33.39 | 2010–2016 | ||
5 | NAMORS | 90.98 | 30.77 | 2010–2016 | ||
6 | HGU | 102.59 | 32.85 | 2015–2017 | [39] | https://fluxnet.org/, accessed on 14 November 2024 https://doi.org/10.1038/s41597-020-0534-3 |
7 | Puding | 105.72 | 26.25 | 2015–2019 | [40] | https://nesdc.org.cn/, accessed on 14 November 2024 |
8 | Yuanjiang | 102.18 | 23.47 | 2013–2015 | [41] | https://nesdc.org.cn/, accessed on 14 November 2024 |
9 | Ailaoshan | 101.03 | 24.54 | 2009–2013 | [42] | https://nesdc.org.cn/, accessed on 14 November 2024 |
10 | Gongga | 101.99 | 29.58 | 2004–2006 | [43] | National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Meteoro.tpdc.270423, accessed on 14 November 2024 |
Province | Shady Slope Area (km2) | Sunny Slope Area (km2) |
---|---|---|
Guizhou | 3.75 | 3.88 |
Yunan | 7.59 | 7.95 |
Tibet | 31.65 | 32.30 |
Sichuan | 11.23 | 11.26 |
Chongqing | 1.87 | 1.86 |
Dataset Name | Temporal Resolution | Spatial Resolution | References | Source |
---|---|---|---|---|
GLASS ET | 1 km | 8 day | [27,44] | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn, accessed on 14 November 2024) |
NDVI MYD13A2 | 1 km | 16 day | National Aeronautics and Space Administration (NASA) platform (https://search.earthdata.nasa.gov, accessed on 14 November 2024) | |
SM | 1 km | 1 month | [45] | National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/RemoteSen.tpdc.272760 |
Ta | 1 km | 1 month | [46,47,48,49] | National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Meteoro.tpdc.270961 |
RH | 1 km | 1 month | [50] | National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.8070140 |
LST | 1 km | 1 day | [50,51,52,53,54] | National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Meteoro.tpdc.271252 |
Rs | 10 km | 1 month | [55,56,57,58] | National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Atmos.tpdc.272817 |
Time | Direction | Yunnan | Guizhou | Sichuan | Chongqing | Tibet | Southwest |
---|---|---|---|---|---|---|---|
2003 | shady slope | 746.31 | 741.74 | 501.15 | 674.19 | 254.06 | 415.56 |
sunny slope | 760.67 | 748.25 | 515.27 | 679.88 | 262.31 | 427.54 | |
2004 | shady slope | 698.20 | 714.19 | 490.03 | 651.65 | 248.66 | 401.09 |
sunny slope | 714.51 | 721.83 | 504.93 | 658.21 | 257.49 | 413.93 | |
2005 | shady slope | 719.56 | 735.53 | 509.54 | 683.76 | 259.14 | 416.27 |
sunny slope | 735.42 | 742.91 | 523.03 | 687.45 | 269.19 | 429.34 | |
2006 | shady slope | 738.47 | 730.90 | 510.40 | 692.75 | 259.09 | 419.00 |
sunny slope | 753.92 | 738.06 | 524.19 | 695.98 | 269.66 | 432.33 | |
2007 | shady slope | 730.46 | 743.15 | 497.42 | 693.18 | 252.94 | 412.79 |
sunny slope | 743.94 | 750.08 | 510.98 | 698.30 | 263.00 | 425.49 | |
2008 | shady slope | 732.43 | 727.20 | 502.40 | 677.09 | 258.56 | 415.52 |
sunny slope | 747.36 | 734.97 | 517.40 | 684.23 | 268.34 | 428.81 | |
2009 | shady slope | 747.53 | 742.19 | 505.38 | 685.48 | 249.50 | 414.35 |
sunny slope | 764.76 | 750.33 | 518.81 | 691.25 | 260.49 | 428.27 | |
2010 | shady slope | 679.78 | 667.75 | 488.76 | 636.29 | 265.47 | 404.29 |
sunny slope | 701.84 | 680.61 | 501.29 | 647.50 | 272.43 | 416.69 | |
2011 | shady slope | 713.33 | 701.83 | 500.40 | 644.22 | 264.72 | 413.24 |
sunny slope | 732.71 | 712.18 | 513.14 | 651.60 | 271.91 | 425.28 | |
2012 | shady slope | 690.29 | 667.73 | 487.51 | 633.82 | 261.42 | 403.11 |
sunny slope | 711.90 | 683.55 | 500.19 | 644.67 | 267.01 | 414.89 | |
2013 | shady slope | 707.52 | 736.94 | 518.75 | 686.45 | 264.94 | 419.83 |
sunny slope | 727.34 | 748.16 | 533.40 | 696.05 | 270.63 | 431.66 | |
2014 | shady slope | 710.94 | 694.38 | 496.98 | 638.45 | 263.89 | 411.09 |
sunny slope | 733.18 | 709.23 | 509.24 | 650.92 | 269.27 | 422.85 | |
2015 | shady slope | 727.03 | 723.43 | 510.33 | 674.48 | 256.32 | 414.67 |
sunny slope | 748.33 | 736.17 | 523.43 | 685.30 | 261.59 | 426.34 | |
2016 | shady slope | 723.81 | 738.36 | 513.82 | 683.19 | 270.29 | 424.18 |
sunny slope | 744.37 | 751.42 | 526.57 | 692.55 | 275.88 | 435.78 | |
2017 | shady slope | 724.21 | 711.75 | 509.94 | 671.12 | 279.76 | 426.73 |
sunny slope | 746.56 | 723.89 | 522.81 | 681.50 | 285.46 | 438.51 | |
2018 | shady slope | 722.44 | 707.22 | 504.79 | 666.13 | 269.42 | 419.11 |
sunny slope | 744.27 | 723.37 | 518.92 | 676.51 | 275.30 | 431.52 |
Slope Range (°) | Category | Slope Range (°) | Category |
---|---|---|---|
0–5 | I | 25–30 | VI |
5–10 | II | 30–35 | VII |
10–15 | III | 35–40 | VIII |
15–20 | IV | >40 | IX |
20–25 | V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, Y.; Shao, H.; Du, C.; Guo, Y.; Dai, X. Comparison of the Distribution of Evapotranspiration on Shady and Sunny Slopes in Southwest China. Remote Sens. 2024, 16, 4310. https://doi.org/10.3390/rs16224310
Kan Y, Shao H, Du C, Guo Y, Dai X. Comparison of the Distribution of Evapotranspiration on Shady and Sunny Slopes in Southwest China. Remote Sensing. 2024; 16(22):4310. https://doi.org/10.3390/rs16224310
Chicago/Turabian StyleKan, Yixi, Huaiyong Shao, Chang Du, Yimeng Guo, and Xianglong Dai. 2024. "Comparison of the Distribution of Evapotranspiration on Shady and Sunny Slopes in Southwest China" Remote Sensing 16, no. 22: 4310. https://doi.org/10.3390/rs16224310
APA StyleKan, Y., Shao, H., Du, C., Guo, Y., & Dai, X. (2024). Comparison of the Distribution of Evapotranspiration on Shady and Sunny Slopes in Southwest China. Remote Sensing, 16(22), 4310. https://doi.org/10.3390/rs16224310